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e \When observations are in R"

o Distances and Positive Definite Kernels share many properties

o At their interface lies the family of Negative Definite Kernels
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Distances and Positive Definite Kernels are crucial ingredients
in many popular ML algorithms '

e \When observations are in R"

e Hilbertian metrics are a sweet spot, both in theory and practice.
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Outline

Distances and Positive Definite Kernels are crucial ingredients
in many popular ML algorithms '

e When comparing structured data (constrained subsets of R", n very large)

o Classical distances on R" that ignore such constraints perform poorly

o Combinatorial distances (to be defined) take them into account
(string, tree) Edit-distances, DTW, optimal matchings, transportation distances

o Combinatorial distances are not negative definite (in the general case)
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Outline

Distances and Positive Definite Kernels are crucial ingredients
in many popular ML algorithms '

e When comparing structured data (constrained subsets of R", n very large)

Main message of this talk:

we can recover p.d. kernels from combinatorial distances
through generating functions.
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Distances and Kernels
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Distances

A bivariate function defined on a set X,

d: XxX — R,
(x,y) = d(xy)

is a distance if Vx,y,z e X,
e d(x,y) = d(y,x), symmetry
e d(x,y) =0 < x =y, definiteness

e d(x,z) <d(x,y)+ d(y,z), triangle inequality
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Kernels (Symmetric & Positive Definite)

A bivariate function defined on a set X

k: XxX — R,
(x,y) = k(xy)

is a positive definite kernel if Vx,y € &,
o k(x,y) = k(y,x), symmetry
and Vn € N/ {xy, - ,x,} € X", ceR"

® > i cicik(x,x5) >0
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Matrices

Convex cone of n X n distance matrices - dimension

n(n—1)
2

3(2) + (i) linear inequalities; n equalities
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Matrices

Convex cone of n X n distance matrices - dimension
M, = {X c Ran‘xu = 0; for ¢ #j,ibz'j > O;ZCik—l—Zij — Ty > O}

n(n—1)
2

3(2) + (i) linear inequalities; n equalities

. . . 1
Convex cone of n x n p.s.d. matrices - dimension —”(”; )

St={X eR™"| X = XT;yz e R", 27Xz > 0}

Vz € R", (X, zz!) > 0: infinite number of inequalities; (i) equalities
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d distance

k kernel
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Functions & Matrices

& VneN{xy, - ,x,} €A™

& VneN {xy, - ,x,}ex”

[d(xiv Xj)] e M,

k(xi,x;)] € S
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Extreme Rays & Facets
M., is a polyhedral cone.

e Facets = 3(2) hyperplanes d;i, + d; — d;; = 0.

e Avis (1980) shows that extreme rays are arbitrarily complex using graph metrics
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Extreme Rays & Facets
M., is a polyhedral cone.

e Facets = 3(2) hyperplanes d;i, + d; — d;; = 0.

e Avis (1980) shows that extreme rays are arbitrarily complex using graph metrics

0

d1s = min(dyo + dos, d14 + d34)

Kernel & RKHS Workshop 24


http://cgm.cs.mcgill.ca/~avis/doc/avis/Av80c.pdf

Extreme Rays & Facets

M., is a polyhedral cone.

e Facets = 3(2) hyperplanes d;i, + d; — d;; = 0.
e Avis (1980) shows that extreme rays are arbitrarily complex using graph metrics

e Let GG, , a random graph with n points and edge probability P(ij € G, , = p).
o If for some 0 < e < 1/5,n~1/5T¢ < p <1 —n-1/4+e

o then the distance induced by G is an extreme ray of M,, with probability
1 —o(1).
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Extreme Rays & Facets
M., is a polyhedral cone.

e Facets = 3(2) hyperplanes d;i, + d; — d;; = 0.
e Avis (1980) shows that extreme rays are arbitrarily complex using graph metrics

e Let GG, , a random graph with n points and edge probability P(ij € G, , = p).

o If forsome 0 < e < 1/5,n_1/5+5 <p<1—nVite

o then the distance induced by G is an extreme ray of M,, with probability
1 —o(1).

e Grishukin (2005) characterizes the extreme rays of M7 (> 60.000)
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Extreme Rays & Facets
M., is a polyhedral cone.

e Facets = 3(2) hyperplanes d;i, + d; — d;; = 0.

e Avis (1980) shows that extreme rays are arbitrarily complex using graph metrics
S is a self-dual, homogeneous cone. Overall far easier to study:

e Facets are isomorphic to S,j for k. <n

o Extreme rays exactly the p.s.d matrices of rank 1, zz’.
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Extreme Rays & Facets

M., is a polyhedral cone.

e Facets = 3(2) hyperplanes d;i, + d; — d;; = 0.

e Avis (1980) shows that extreme rays are arbitrarily complex using graph metrics
S is a self-dual, homogeneous cone. Overall far easier to study:

e Facets are isomorphic to S,j for k. <n

o Extreme rays exactly the p.s.d matrices of rank 1, zz’.
o — Eigendecomposition: if K € ST then K ="' | \iz;z; .

o — Integral representations for p.d. kernels themselves (Bochner theorem)
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Checking, Projection, Learning
Optimizing in M, is relatively difficult.

e Check if X isin M,, requires up to 3(2) comparisons.

e Projection: triangle fixing algorithms (Brickell et al. (2008)), no convergence
speed guarantee.

e No simple barrier function
Optimizing in S ' is relatively easy.

e Check if X is in S only requires finding minimal eigenvalue (eigs).
e Projection: threshold negative eigenvalues.

e logdet barrier, semidefinite programming

Kernel & RKHS Workshop
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Checking, Projection, Learning
Optimizing in M, is relatively difficult.

e Check if X isin M,, requires up to 3(2) comparisons.

e Projection: triangle fixing algorithms (Brickell et al. (2008)), no convergence
speed guarantee.

e No simple barrier function
Optimizing in S is relatively easy.

e Check if X is in S only requires finding minimal eigenvalue (eigs).
e Projection: threshold negative eigenvalues.

e logdet barrier, semidefinite programming

“Real” metric learning in M., is difficult, Mahalanobis learning in S is easier
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Negative Definite Kernels

. . . . 1
Convex cone of n x n negative definite kernels - dimension —n(n; )

N, = {X e R"*"| X = Xt vze R z1'1 = O,ZTXZSO}

infinite linear inequalities; (i) equalities
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Negative Definite Kernels

. . . i . 1
Convex cone of n x n negative definite kernels - dimension —”(”; )

N, ={X e R | X = XT Vzc R", zT'1 = 0,27 Xz<0}

infinite linear inequalities; (i) equalities

1 nd. kernel < Vne N {xy, - ,x,} € A" [w(xi,xj)] c Nn

Kernel & RKHS Workshop
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A few important results on Negative Definite Kernels

If 1) is a negative definite kernel on X then

e 1 a Hilbert space H, a mapping x — ¢y € H, a real valued function f on X s.t.

o If Vx € X,¢(x,2) =0, then f =0 and /7 is a semi-distance.

P (x,y) = lla — yll> + fz) + f(y)

o If {1p =0} = {(x,x),x € X}, then /1) is a distance.

o If Yp(x,x) >0, then 1 < a < 0, 1™ is negative definite.

def

o k= e ' is positive definite for all ¢t > 0.

Kernel & RKHS Workshop
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A Rough Sketch

We can now give a more precise meaning to

Kernel & RKHS Workshop
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A Rough Sketch

using this diagram

vanishing
diagonal

Hilbertian
metrics

pseudo—hilbertian
metrics

infinitely
divisible kernels
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Importance of this link

e One of the biggest practical issues with kernel methods is that of diagonal
dominance.

o Cauchy Schwartz: k(x,y) < \/k(x,x)k(y,y)

Kernel & RKHS Workshop
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Importance of this link

e One of the biggest practical issues with kernel methods is that of diagonal
dominance.

o Cauchy Schwartz: k(x,y) < \/k(x,x)k(y,y)
o Diagonal dominance: k(x,y) < 1/k(x,x)k(y,y)

e If £ is infinitely divisible, k% with small « is
o positive definite
o less diagonally dominant

e This explain the success of

. o g2
o Gaussian kernels e~ tIx—Vl

o Laplace kernels e~ tlIx=Vl

e and arguably, the failure of many non-infinitely divisible kernels, because too
difficult to tune.

Kernel & RKHS Workshop
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Questions Worth Asking

Two questions:

Let d be a distance that is not negative definite.
is it possible that e %1% is positive definite for some ¢; € R?

e-infinite divisibility.
a distance d such that e~*? is positive definite for t > €7

Kernel & RKHS Workshop
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Questions Worth Asking

Two questions:

Let d be a distance that is not negative definite.
is it possible that e~%1% is positive definite for some t; € R?

yes.
Examples exist. Stein distance (Sra, 2011) and Inverse generalized variance (C. et
al., 2005) kernel for p.s.d matrices.

“e-infinite divisibility” .
a distance d such that e~?? is positive definite for t > €7
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Positivity & Combinatorial Distances

Kernel & RKHS Workshop
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Structured Objects

e Objects in a countable set

o variable length strings, trees, graphs, permutations

e Constrained vectors

o Positive vectors, histograms

e Vectors of different sizes

o variable length time series

Kernel & RKHS Workshop
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Structured Objects

e Objects in a countable set

o variable length strings, trees, graphs, sets

e Constrained vectors

o Positive vectors, histograms

e Vectors of different sizes

o variable length time series

How can we define a kernel or a distance on such sets?

in most cases, applying standard distances on R"™ or even N" is meaningless

Kernel & RKHS Workshop
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Back to fundamentals

e Distances are optimal by nature, and quantify shortest length paths.

o Graph-metrics are defined that way

e V-
N n

o Triangle inequalities are defined precisely to enforce this optimality

d(x,y) < d(x,z) + d(z,y)

Kernel & RKHS Workshop
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Back to fundamentals

e Distances are optimal by nature, and quantify shortest length paths.

o Graph-metrics are defined that way

o\
Nooa

o Triangle inequalities are defined precisely to enforce this optimality

d(x,y) < d(x,z) +d(z,y)

— many distances on structured objects rely on optimization

Kernel & RKHS Workshop
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Back to fundamentals

e p.d. kernels are additive by nature

o k is positive definite & dop : X — H such that

k(x,y) = (o(x), o(y)) -

e X eSS ILe R X =L"L.

Kernel & RKHS Workshop
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Back to fundamentals

e p.d. kernels are additive by nature

o k is positive definite < dp : X — H such that

k(x,y) = (¢(x), o(y))n-

e XSt ILe R X =L"L.

— many kernels on structured objects
rely on defining explicitly (possibly infinite) feature vectors

very large literature on this subject which we will not address here.

Kernel & RKHS Workshop



Combinatorial Distances

e To define a distance, an approach which has been repeatedly used is to,

o Consider two inputs x, Y,
o Define a countable set of mappings from x to y, T'(x,y)

o Define a cost ¢(7) for each element 7 of T'(x,y).

o Define a distance between x,y as

d(x,y) = i c(7)
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Combinatorial Distances

e To define a distance, an approach which has been repeatedly used is to,

o Consider two inputs x, Y,

o Define a countable set of mappings from x to y, T'(x,y)
o Define a cost ¢(7) for each element 7 of T'(x,y).

o Define a distance between x,y as

d(x,y) = i c(T)

e Symmetry, definiteness and triangle inequalities depend on ¢ and T.
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Combinatorial Distances

e To define a distance, an approach which has been repeatedly used is to,

o Consider two inputs x, Y,

o Define a countable set of mappings from x to 'y, T'(x,y)
o Define a cost ¢(7) for each element 7 of T'(x,y).

o Define a distance between x,y as

d(x,y) = i c(7)

e Symmetry, definiteness and triangle inequalities depend on ¢ and T'.

e In many cases, T is endowed with a dot product, ¢(7) = (7, 0) for some 6.

Kernel & RKHS Workshop
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Combinatorial Distances are not Negative Definite
d(x,y) = min ¢(7)

T€T(x,y)

e |In most cases such distances are not negative definite

e Can we use them to define kernels?

e Yes so far, using always the same technique.

Kernel & RKHS Workshop

52



An alternative definition of minimality

for a family of numbers a,,,n € N,

soft-mina,, = — log Z e 9n
n

Min: 0.19 Soft—-min: —1.4369

o
o o

—m

-a
-a
-a
-\
-
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Soft-min of costs - Generating Functions

d(x,y) = Tergi(gy) c(7)

€

—d

is not positive definite in the general case

Kernel & RKHS Workshop
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Soft-min of costs - Generating Functions

d(x,y) = i c(7)

e~ % is not positive definite in the general case

d(x,y) = soft-min ¢(7
(x,y) oft-mir (7)

e~ % has been proved to be positive definite in all known cases
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Soft-min of costs - Generating Functions

d(x,y) = i c(7)

e~ % is not positive definite in the general case

d(x,y) = soft-min ¢(7
(x,y) oft-mir (7)

e~ % has been proved to be positive definite in all known cases

e 0(xy) — Z o (T0) — Grixy) ()

TET(x,y)

G1(x,y) Is the generating function of the set of all mappings between x and y.

Kernel & RKHS Workshop
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Example: Optimal assignment distance between two sets

e Input: x ={x1, -,z },y={y1, - ,yn} € X"

I Y1
Y2
L2
Y3
X3
Yyq
L4

Kernel & RKHS Workshop
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Example: Optimal assignment distance between two sets

e Input: x={x1, -z}, y={y1, - ,ynt € X"

,fL‘l dl yl
Y2
To d13
Ys
I3 d2
34 7 Ya
X4

e cost parameter: distance d on X'. mapping variable: permutation o in S,

o cost: >, | d(zi, Yo(s)-

Kernel & RKHS Workshop
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Example: Optimal assignment distance between two sets

® Inp'Jt: X:{xla'” 7xn}7y:{y17'” 7yn} SV

le dl yl
Y2
9o d13
Y3
I3 d2
34 7 Ya
X4

e cost parameter: distance d on X'. mapping variable: permutation ¢ in S,,.

o cost: D i, d(2i,Yo(s)) = (P, D) where D = [d(x;,y;)]

dASSig.(x7 Y) — minaESn Z?:l d(x’w ya(z’)) — minaESn <P07 D>

Kernel & RKHS Workshop
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Example: Optimal assignment distance between two sets

dASSig.(x7 Y) — minaESn 2?21 d(x’u ya(z’)) — minaESn<P0> D>

define k = e~?. If k is positive definite on X then

kperm (X, ¥) = D ocs, e~ \FoD) = Permanent([k(z;, y;)]

is positive definite (C. 2007). e~ %sie is not (Frohlich et al. 2005, Vert 2008).

Kernel & RKHS Workshop
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Example: Optimal alignment between two strings

e Input: z = (21, - ,xn),y = (Y1, ,Ym) € X", X finite

x = DOING, y =DONE

Kernel & RKHS Workshop
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Example: Optimal alignment between two strings

e Input: z = (z1, -+ ,2n),y = (Y1, ,Ym) € X", X finite

x = DOING, y =DONE

e mapping variable: alignment m = (28%
G *
N °
I
O °
D| e
DIO|IN|E

Kernel & RKHS Workshop

m1(q
m2(q

)
)

) . (increasing path)
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Example: Optimal alignment between two strings

e Input: z = (z1, - ,2n),y = (Y1, ,Ym) € X", X finite

x = DOING, y =DONE

e mapping variable: alignment ™ = (28% 28;) (increasing path)
G *
N .
|
O o
D| e
DIO|N|E

e cost parameter: distance d on X + gap function g : N — R.

o c(m) = N d(@ry i) Ymo(i) +2oim s g(m(i41) —m1(8)) + g(ma(i+1) —ma(3))
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Example: Optimal alignment between two strings

e Input: z = (x1, - ,2n),y= (Y1, " ,Ym) € X", X finite

x = DOING, y =DONE

. . . 7T1(1) 7T1((]) . .
e mapping variable: alignment m = . (increasing path
pping g (m(l) o () ) g path)
G *
N °
I
O °
D| e
DIO|N|E

e cost parameter: distance d on X + gap function g : N — R.

o () = S0 Ay (i) Yma(i) F 2oy gl (i 41) —71(4)) + g(ma(i+1) — (i)

da“gn(x, y) = MIN;ecAlignments C(W)
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Example: Optimal alignment between two strings

dalign (X, Y) — Hlirl7rEAIignments C(ﬂ-)

define k = e~ <. If k is positive definite on X then

kLA(X’ y) — ZWEAIignments 6_0(71-)

is positive definite (Saigo et al. 2003).
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Example: Optimal time warping between two time series

e Input: z = (21, - ,xp),y = (Y1, ,Ym) € R”

Kernel & RKHS Workshop
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Example: Optimal time warping between two time series

e Input: z = (21, - ,xp),y = (Y1, ,Ym) € R”

m (1) - m(g)

. (increasing contiguous path
7T2(1) 7T2(q)> ( g g P )

e mapping variable: T = (

L5

) oy Do A0 A

vy s}t Rg) i M8 | Dss | D3 |

.| eo®o®®

U1 Y2 Y3 Y4 Y5 Y6 yr
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Example: Optimal time warping between two time series

o Input: z = (21, -+ ,25),y = (Y1, ,ym) ER"

e mapping variable: T = (

5

T4

T3

1

m(1) - m(g)
mo(1) -+ ma(q)

). (increasing contiguous path)

Y1 Y2 Y3 Y4 Ys Yo y7

e cost parameter: distance d on X. cost: ¢(7) = Zlﬂl d(ivm(z')ay@(i))

Kernel & RKHS Workshop
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Example: Optimal time warping between two time series

o Input: z = (21, -+ ,25),y = (Y1, ,ym) ER"

e mapping variable: T = (

m (1) - m(g)

. (increasing contiguous path
(1) - malq)) g contiguous path)

5

T4

T3

T2

1

Y1 Y2 Y3 Y4 Ys Yo y7

e cost parameter: distance d on X. cost: ¢(7) = Zlﬂl d(ivm(z')ay@(i))

Kernel & RKHS Workshop
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Example: Optimal alignment between two strings

dDTW(xa Y) — Hlin7rEA|ignments C(ﬂ-)

define k = e~?. If k is positive definite and geometrically divisible on X then

kGA(X’ y) — ZWEAIignments e_C(W)

is positive definite (C. et al. 2007, C. 2011)
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Example: Edit-distance between two trees

e Input: two labeled trees x,y.

e mapping variable: sequence of substitutions/deletions/insertions of vertices

o Deleted
(@) Inserted
(x)—=(v) Substituted

e cost parameter: v distance between labels and cost for deletion/insertion

dTreeEdit(x7 Y) — HlinUEEditScripts(x,y) Z ’Y(O-z')

Kernel & RKHS Workshop



Example: Edit-distance between two trees

e Input: two labeled trees x,y.

e mapping variable: sequence of substitutions/deletions/insertions of vertices

e cost parameter:  distance between labels and cost for deletion/insertion

Deleted
O Inserted
(xp)—=() Substituted

dTreeEdit (X, Y) = Min, cigitScripts(x.y) 2 Y(04)

e Positive definiteness of the generating function (if e™) p.d. proved by Shin &
Kuboyama 2008; Shin, C., Kuboyama 2011.

Kernel & RKHS Workshop
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Example: Transportation distance between discrete histograms

e Input: two integer histograms x,y € N such that Zle x; = Zle v, = N

e mapping: transportation matrices U(r,c) = {X € N4 X1;=x, XT1,; =y}

e cost parameter: M distance matrix in M.

dw(X, y) — minXGU(r,c) <X7 M>
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Example: Transportation distance between discrete histograms

dw(X, y) — minXGU(’r,c) <X7 M>

define k;; = e~"™ii. If |k;;] is positive definite on X’ then

kM(xv Y) — ZXGU(’I“,C) e~ M)

is positive definite (C., submitted).
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To wrap up

d(x,y)zTgi(l;l,y)C(T), 5(x,y)=sTog};(rQ;g\ c(7)

e 0xy) = D reT(xy) e~ ™0 = Grpxy)(0) is positive definite in many (all) cases.
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Open problems

e 1 unified framework?

o Convolution kernels (Haussler, 1998)

o Mapping kernels (Shin & Kuboyama 2008) were an important addition
o Extension to Countable mapping kernels (Shin 2011)

o Extension to symmetric functions (not just e) (Shin 2011).

e To speed up computations, possible to restrict the sum to subset of T'(x,y)?

o C. 2011 with DTW.

o C. submitted with transportation distances

Kernel & RKHS Workshop
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