
A mutual information kernel for sequences
Marco Cuturi

Computational Biology Group
Ecole des Mines de Paris
35 rue Saint Honoré
77300 Fontainebleau

marco.cuturi@ensmp.fr

Jean-Philippe Vert
Computational Biology Group
Ecole des Mines de Paris
35 rue Saint Honoré
77300 Fontainebleau

jean-philippe.vert@ensmp.fr

Abstract—We propose a new kernel for strings which bor-
rows ideas and techniques from information theory and data
compression. This kernel can be used in combination with
any kernel method, in particular Support Vector Machines for
protein classification. By incorporating prior assumptions on
the properties of the alphabet and using a Bayesian averaging
framework, we compute the value of this kernel in linear time
and space, benefiting from previous achievements proposed in the
field of universal coding. Encouraging classification results are
reported on a standard protein homology detection experiment.

I. INTRODUCTION
The need for efficient analysis and classification tools for

sequences is more than ever a core problem in most application
fields of statistical learning such as computational biology. In
particular, the availability of an ever-increasing quantity of
biological sequences calls for efficient and computationally
feasible algorithms to detect functional similarities between
DNA or amino-acid sequences, cluster them, and annotate
them.
Recent years have witnessed the rapid development of a

class of algorithms called kernel methods [20] that may offer
useful tools for these tasks. In particular, the Support Vector
Machine (SVM) algorithms [4], [24] provide state-of-the-art
performance in many real-world problems of classifying ob-
jects into predefined classes. SVMs have already been applied
with success to a number of issues in computational biology,
including but not limited to protein homology detection [13],
[16], [19], [2], [26] functional classification of genes [17],
[25], or prediction of gene localization [11]. A more complete
survey of the application of kernel methods in computational
biology is presented in the forthcoming book [21].
The basic ingredient shared by all kernel methods is the

kernel function, that measures similarities between pairs of
objects to be analyzed or classified. While early-days SVM
focused on the classification of vector-valued objects, for
which kernels are well understood, recent attempts to use SVM
for the classification of more general objects have resulted in
the development of several kernels for strings [27], [10], [13],
[15], [16], [19], [2], [26], graphs [14], or even phylogenetic
profiles [25].
A useful kernel for protein sequences should have several

properties. It should be rapid to compute (typically, have a
linear complexity with respect to the lengths of the com-
pared sequences), represent a biologically relevant measure

of similarity, be general enough to be applied without tuning
on different datasets, yet efficient in terms of classification
accuracy. Such an ideal kernel probably does not exist, and
different kernels might be useful in different situations. For
large-scale or on-line applications, the computation cost be-
comes critical and only fast kernels, such as the spectrum [15]
and mismatch [16] kernels can be accepted. In applications
where accuracy is more important than speed, slower kernels
that include more biological knowledge, such as the Fisher
[13] or local alignment [26] kernels might be accepted if they
improve the performance of a classifier.
Our contribution in this paper is to introduce a new class

of kernels for strings that are both rapid to compute (they
have a linear-time complexity in time and memory), while
still including biological knowledge. The biological knowl-
edge takes the form of a family of probabilistic models for
sequences supposed to be useful to model general classes of
proteins. The ones we consider are variable-length Markov
chains, also known as context-tree models [28] or probabilistic
suffix trees [1]. These models offer three advantages: first, they
have been shown to be useful to represent protein families
[1], [9], second, they can have different degrees of generality
by varying the suffix-tree, allowing then to model larger or
smaller classes of sequences, and third, their structure enables
us to derive a kernel that can be implemented in linear time
and space with respect to the sequence length. The last two
features would not be shared by more complex models such
as hidden Markov models [8]. A second source of biological
information is represented by a prior distribution on the
models, including the use of Dirichlet mixtures [8] to take
into account similarities between amino-acids.
As opposed to the classical use of probabilistic models to

model families of sequences [1], [9] or to the Fisher kernel,
we do not perform any parameter or model estimation. We
rather project each sequence to be compared to the set of all
distributions in the probabilistic models, and compare different
sequences through their respective projections. The resulting
kernel belongs to the class of mutual information kernels
introduced in [23]. Formally, the computation of the kernel
boils down to computing some posterior distribution for pairs
of sequences in a Bayesian framework. The computation can
be performed efficiently thanks to a clever factorization of the
family of context-tree models using a trick presented in [28].

The resulting kernel can be interpreted in the light of noiseless
coding theory [7]: it is related to the gain in redundancy when
the two sequences compared are compressed together, and not
independently from one another.
The paper is organized as follows. In Section II we present

the general strategy of making mutual information kernels
from families of probabilistic models. In Section III we define
a kernel for protein sequences based on context-tree models.
Its efficient implementation is presented in Section IV, before
proposing a redundancy interpretation of its value in section
V. Finally, experimental results on a benchmark problem of
remote homology detection are presented in Section VI

II. PROBABILISTIC MODELS AND MUTUAL INFORMATION
KERNELS

A (parametric) probabilistic model on a measurable space
X is a family of distributions {Pθ, θ ∈ Θ} on X , where
θ is the parameter of the distribution Pθ. Typically, the set
of parameters Θ is a subset of n, in which case n is
called the dimension of the model. As an example, a hidden
Markov model (HMM) for sequences is a parametric model,
the parameters being the transition and emission probabilities
[8]. A family of probabilistic models is a family {Pf,θf

, f ∈
F , θf ∈ Θf}, where F is a finite or countable set, and
Θf ⊂ dim(f) for each f ∈ F , where dim(f) denotes the
dimension of f . An example of such a family would be a
set of HMMs with different architectures and numbers of
states. Probabilistic models are typically used to model sets
of elements X1, . . . ,Xn ∈ X , by selecting a model f̂ and
a choosing a parameter θ̂f̂ that best ”fits” the dataset, using
criteria such as penalized maximum likelihood or maximum a
posteriori probability [8].
Alternatively, probabilistic models can also be used to

characterize each single element X ∈ X by the representation
φ(X) =

(

Pf,θf
(X)

)

f∈F,θf∈Θf
. If the probabilistic models

are designed in such a way that each distribution is roughly
characteristic of a class of objects of interest, then the rep-
resentation φ(X) quantifies how X fits each class. In this
representation, each distribution can be seen as a filter that
extracts from X an information, namely the likelihood of X
under this distribution, or equivalently how much X fits the
class modelled by this distribution.
Kernels are real-valued function K : X×X → that can be

written in the form of a dot product K(X,Y) = 〈ψ(X), ψ(Y)〉
for some mapping ψ from X to a Hilbert space [20]. Given
the preceding mapping φ, a natural way to derive a kernel
from a family of probabilistic models is to endow the set of
representations φ(X) with a dot product, and set K(X,Y) =
〈φ(X), φ(Y)〉. This can be done for example if a prior density
π(f, dθf) can be defined on the set of distributions in the
models, by considering the following dot product:

K(X,Y) = 〈φ(X), φ(Y)〉
def
=

∑

f∈F

π(f)

∫

Θf

Pf,θf
(X)Pf,θf

(Y)π(dθf |f). (1)

By construction, the kernel (1) is a valid kernel, that belongs
to the class of mutual information (MI) kernels [23]. Observe
that contrary to the Fisher kernel that also uses probabilistic
models to define kernel, no model or parameter estimation is
required in (1). Intuitively, for any two elements X and Y the
kernel (1) automatically detects the models and parameters
that explain both X and Y well.
There is of course some arbitrary in this kernel, both in

the definition of the models and in the choice of the prior
distribution π. This arbitrary can be used to include prior
(biological) knowledge in the kernel. For example, if one
wants to detect similarity with respect to families of sequences
known to be adequately modelled by HMMs, then using HMM
models constrains the kernel to detect such similarities. We use
this idea below to define a set of models and prior distributions
for protein sequences.
As the likelihood of a sequence under the models we define

below decreases roughly exponentially with its lengths, the
value of the kernel (1) can be strongly biased by differences
in length between the sequences, and can take exponentially
small values. This is a classical issue with many string kernels
that leads to bad performance in classification with SVM [22],
[26]. This undesirable effect can easily be controlled in our
case by normalizing the likelihoods as follows:

Kσ(X,Y) =
∑

f∈F

π(f)

∫

Θf

Pf,θf
(X)

σ
|X| Pf,θf

(Y)
σ

|Y |π(dθf |f).

(2)
where σ is a width parameter and |X| and |Y | stand for the
lengths of both sequences. Equation (2) is clearly a valid kernel
(only the feature extractor φ is modified), and the parameter
σ controls the range of values it takes.

III. A MUTUAL INFORMATION KERNEL BASED ON
CONTEXT-TREE MODELS

In this Section we derive explicitly a MI kernel for strings
based on context-tree models with mixture of Dirichlet priors.
Context-tree models are Markovian models which define an
efficient framework to describe constraints on amino-acid
successions in proteins, as validated by their use in [1], [9].
Dirichlet priors offer a biologically meaningful estimation
of the likelihood of such transitions by giving an a-priori
knowledge on the multinomial parameters which parameterize
Markovian models transitions.

A. Framework and notations
Starting with basic notations and definitions, let E a finite

set of size d called the alphabet. Practically speaking E can be
thought of the 20 letters alphabet of amino-acids. For a given
depth D ∈ corresponding to the maximal memory of our
Markovian models we note M the set of strings of E shorter
than D, i.e. M = ∪D

i=0E
i. We define X = ∪∞

n=0(E
D+1)n the

set on which we define our kernel. Observe that we do not
define directly the kernel on the set of finite-length sequences,
but rather in a slightly more general framework where we
focus on lists of transitions. We thus transform sequences into

finite lists of D + 1 grams, which can each be divided into a
context (i.e a D-long subsequence of the initial sequence) and
the letter which is next to it. This transformation is justified
by the fact that we will always consider Markovian models of
maximal depths D below. An element X ∈ X can therefore be
written as X = {xi = xi

cx
i
l}i=1..NX

where NX is the cardinal
of X and for all i, xi ∈ ED+1 can be divided into a context
xi

c ∈ ED and an output letter xi
l . We also note ∅ the empty

word.
Note that the set X endowed with a list concatenation oper-
ation, denoted as ’+’, is an abelian semigroup with identical
involution (see [3]). The kernel which we propose in this
paper can be considered as a semigroup kernel (setting aside
renormalization on lengths which we use for practical pur-
poses) on X , a viewpoint which could make our approach
the only valid one to define a kernel on X as a function
of the merger of two lists of transitions, namely of the form
K(X,Y) = ϕ(X+Y). Indeed, the Bochner theorem proposed
by [3] in the case of abelian semigroups states that any
exponentially bounded kernel admits an integral representation
of semi-characters on X . This structure fits precisely the
additive bayesian mixture framework of MI kernels which we
use below.

B. Context-tree models
Context-tree distributions require the definition of a com-

plete suffix dictionary (c.s.d) D, a c.s.d being a finite set of
words of M\{∅} such that any left-infinite sequence has a
suffix in D, but no word in D has a suffix in D. We note L(D)
the length of the longest word contained in D and FD the set
of c.s.d D that satisfy L(D) ≤ D. Once this tree structure
is set, we can define a distribution on X by attaching one
multinomial distribution1 on E, with parameters θs ∈ Σd to
each word s of a c.s.d D. Indeed, by denoting θ = (θs)s∈D

we define a conditional distribution on X which is the product
of the likelihood of each transition contained in X , namely:

PD,θ(X) =
NX
∏

i=1

θD(xi
c)

(xi
l), (3)

where for any word m in ED, D(m) is the unique suffix of
m in D.
We present in Figure 1 an example where E = {A,B,C},

the maximal depth D is set to 3 and where D =
{A,AB,BB,ACB,BCB,CCB,C}, with corresponding θs
parameters for s ∈ D, each θs being a vector of the three-
dimensional simplex Σ3. We will also note PD = {(D, θ) :
D ∈ FD, θ ∈ ΘD} the set of context-tree distributions of
depth D.

C. Prior distributions on context-tree models
Having defined a family of distributions PD and recalling

(2), we define in this section a prior probability π(D, dθ) on
PD. This probability factorizes as π(D, dθ) = π(D)π(dθ|D),
two terms which are defined as follows.
1Σd is the canonical simplex of dimension d, i.e. Σd = {ξ = (ξi)1≤i≤d :

ξi ≥ 0,
∑

ξi = 1}.

θA A

B

θAB
A

θBB

B
C

θACB

A

θBCB
B

θCCB

C

θC

C

Fig. 1. Tree representation of a context-tree distribution

1) Prior on the tree structure: FD is the set of complete
trees of depth smaller than D. Intuitively it would make sense
to put more prior weight on small trees than on large trees.
Indeed, the number of different trees with a given number
of leaves increases roughly exponentially with the number of
leaves. As a result, small trees would have a very low influence
compared to big trees if their prior probability was not boosted.
Following [28] we define a simple probability π on FD that
has this property by describing a random generation of trees.
Starting from the root, the tree generation process follows
recursively the following rule: each node has d children with
probability ε, and 0 children with probability 1−ε (it is then a
leaf). In mathematical terms, this defines a branching process.
If we denote by

◦
D the strict suffixes of elements of D, the

probability of a tree is given by:

π(D) =
∏

s∈
◦
D

ε
∏

s∈D
l(s)<D

(1 − ε) = ε
|D|−1
d−1 (1 − ε)card{s∈D|l(s)<D} .

(4)
2) Priors on multinomial parameters: For a given tree D

we now define a prior on ΘD = (Σd)D. We assume an
independent prior among multinomials attached to different
words with the following form:

π(dθ|D) =
∏

s∈D

ω(dθs).

Here ω is a prior distribution on the simplex Σd. Following
[28] a simple choice is to take a Dirichlet prior of the form:

ωβ(dθ) =
1√
d

Γ(
∑d

i=1 βi)
∏d

i=1 Γ(βi)

d
∏

i=1

θβi−1
i λ(dθ),

where λ is Lebesgue’s measure and β = (βi)i=1..d is the
parameter of the Dirichlet distribution. As it has been observed
that mixtures of Dirichlet are a more natural way to model
distributions on amino-acids [5], [18] we propose to use such
a prior here. An additive mixture of n Dirichlet distributions
is defined by n Dirichlet parameters β1, . . . , βn and by the
probabilities γ1, . . . , γn of each mixture (with

∑n
k=1 γ

k = 1),

and has the following definition:

ω(dθs) =
n

∑

k=1

γkωβk(dθs). (5)

D. Triple mixture mutual information kernel
Combining the definition of the kernel (2) with the definition

of the context-tree model distributions (3) and of the prior
on the set of distributions (4, 5), we obtain the following
expression for the kernel:

Kσ(X, Y) =
∑

D∈FD

π(D)

∫

ΘD

PD,θ(X)
σ

NX PD,θ(Y)
σ

NY

∏

s∈D

ω(dθs).

(6)
We observe that (6) involves three summations respectively
over the trees (through prior π), the components of the
Dirichlet mixtures (through weights γ), and the multinomial
parameters (through ωβ priors). This generalizes the double
mixture performed in [28] in the context of sequence com-
pression by adding a mixture of Dirichlet, justified by our
goal to process protein sequences.

IV. KERNEL IMPLEMENTATION
The definition of the kernel in (6) does not express a

practical way to compute it. To do so, we propose to adapt
the context-tree weighting algorithm, first introduced in [28],
based on a factorization of the kernel along the branches of
the context-tree. Let us introduce first a few more notations.
We set, given r ∈ , β = (βi)1≤i≤r ∈ (+∗)

r and
α = (αi)1≤i≤r ∈ (+)

r:

β(α)
def
=

∫

Σr

r
∏

i=1

θαi

i ωβ(dθ) =
Γ(β

!
)

∏r
i=1 Γ(βi)

∏r
i=1 Γ(αi + βi)

Γ(α
!
+ β

!
)

,

where Γ is the Gamma function, β
!

=
∑r

i=1 βi, and α!
=

∑r
i=1 αi. The quantity β(α) corresponds to the averaging of

likelihoods θ(α) under a Dirichlet prior of parameter β for θ
varying in Σr. In the following implementation we assume that
a numerical approximation for the function β is available.
We can now divide the algorithm into two phases which can
be computed alongside at each recursive step.

A. Defining counters
The first step of the algorithm is to compute, for e ∈ E and

m ∈ ED, the following counters:

ρm(X) =
NX
∑

i=1

(xi
c = m),

θ̂m,e(X) =

{
∑ NX

i=1 (xi
c=m,xi

l=e)
ρm(X) if ρm(X) > 0

1
d else

,

am,e(X,Y) =
ρm(X)

|X|
θ̂m,e(X) +

ρm(Y)

|Y |
θ̂m,e(Y)

Counter ρm(X) keeps track of the frequency of the counter
m in the set X while θ̂m,e summarizes the empirical proba-
bility of the apparition of letter e after m has been observed.
Finally am,e(X,Y) takes into account a weighted average of
the transitions encountered both in X and Y . To take into

account smaller contexts we define the same values when m
goes through M , the set of words of length less than D.
The most efficient way to compute those counters is to start
defining them when m only goes through visited contexts,
which are up to NX +NY , and then benefit from the following
downward recursion on the length of the string m when m
goes through all suffixes of visited contexts:

ρm(X) =
∑

f∈E

ρfm(X),

θ̂m,e(X) =

∑

f∈E ρf.m(X)θf.m,e(X)

ρm(X)
,

am,e(X,Y) =
∑

f∈E

afm,e(X,Y).

B. Recursive computation of the triple mixture
We can now attach to each m for which we have calculated

the previous counters the value:

Km(X,Y) =
n

∑

k=1

γk
βk

(

σ (am,e(X,Y))e∈E

)

,

which computes two mixtures, the first being continuous on
the possible values of θ weighted by a Dirichlet prior and the
second being discrete by using the different weighted Dirichlet
distributions given by the mixture (γk, βk). By defining now
the quantity Υm(X,Y), which is also attached to each visited
word m and computed recursively:

Υm(X,Y) =











Km(X,Y) if l(m) = D,

(1 − ε)Km(X,Y)

+ ε
∏

e∈E Υe.m(X,Y) if l(m) < D

.

We compute the third mixture over the different possible tree
structures of our complete-suffix dictionary by taking into
account the branching probability ε. Indeed, we finally have,
recalling ∅ is the empty word, that:

Kσ(X,Y) = Υ∅(X,Y). (7)

Proof: In order to prove (7), let us first fix a tree
D and observe that, for X = (xi

c, x
i
l)i=1..NX

and Y =
(yi

c, y
i
l)i=1..NY

:
∫

ΘD

PD,θ(X)
σ

NX PD,θ(Y)
σ

NY

∏

s∈D

(

n
∑

k=1

γkωβk(dθs)

)

=

∫

ΘD

∏

s∈D

(

∏

e∈E

θs(e)
σas,e(X,Y)

(

n
∑

k=1

γkωβk(dθs)

))

=
∏

s∈D

n
∑

k=1

γk

∫

Σd

(

∏

e∈E

θs(e)
σas,e(X,Y)ωβk(dθs)

)

=
∏

s∈D

n
∑

k=1

γk
βk

(

σ (as,e (X,Y))e∈E

)

=
∏

s∈D

Ks(X,Y),

where we have used Fubini’s theorem to factorize the integral
in the second line. Having in mind (6), we have thus proved
that Kσ(X,Y) =

∑

D∈FD
π(D)

∏

s∈D Ks(X,Y). The second

part of the proof is identical to the one given in [28] [6] to
which we refer to finalize this result.
The computation of the counters has a linear cost in time
and memory with respect to NX + NY . As only nodes that
correspond to suffixes of X and Y are created, recursive
computation of Υm is also linear (the values Υm on non-
existing nodes being equal to 1). As a result, the computation
of the kernel is linear in time and space with respect to
NX + NY .

V. REDUNDANCY ANALYSIS

As explained previously, our kernel actually considers
a sequence as a set of weighted empirical distributions
{(ρm, θ̂m)}m∈M . These couples are actually used to compute
the likelihood of such a set with respect to a specific context-
tree distribution (D, θ) contained in the manifold of all distri-
butions defined by model D. This manifold is a submanifold
of (Σd)M which admits the family of multinomial parameters
(θs)s∈M as a coordinate system. The elements {θ̂s, s ∈ D}
can thus be seen as the coordinates of X in the submanifold
associated with model D and weights ρs can be seen as the
empirical measure of each θ̂s present in X .
We denote by kl(θ||θ′) the kullback-leibler divergence be-

tween θ and θ′, two multinomial parameters of size d, i.e
kl(θ||θ′) =

∑

i=1..d θi ln θi

θ′i
. We also note H(θ) the entropy of

θ, i.e.H(θ) =
∑

i=1..d θi ln θi. The mixture coding probability
Pπ on X following the π prior on FD can be rewritten as a
simple function of ρ and θ̂:

Pπ(ρ, θ̂) =
∑

D∈FD

π(D)
∏

s∈D

e−σρsH(θ̂s)

∫

Σd

e−σρskl(θ̂s||θ)ω(dθ)

We consider rπ
def
= − ln Pπ, the redundancy of the coding

probability computed by this mixture. This quantity can be
interpreted to express the value of our kernel by defining the
function tπ which measures the convexity of rπ on Σ|D|×ΘD:

tπ(X,Y) =
1

2

[

rπ
(

ρ̂(X), θ̂(X)
)

+ rπ
(

ρ̂(Y), θ̂(Y)
)]

− rπ

(

ρ̂(X) + ρ̂(Y)

2
,
θ̂(X) + θ̂(Y)

2

)

,

where we have used the notation ρ̂(X) = 1
|X|ρ(X). Finally

we have, by defining the renormalized kernel K̃σ as

K̃σ(X,Y) = Kσ(X,Y)/
√

Kσ(X,X)Kσ(Y, Y),

that

K̃σ(X,Y) = e−tπ(X,Y),

providing us with a geometrical interpretation, in terms of
convexity of the redundancy function, of the value computed
by our kernel.

VI. EXPERIMENTS
We report preliminary results concerning the performance

of the MI kernel on a widely used benchmark experiment
proposed in [13] which tests the capacity of SVMs to detect
remote homologies between protein domains. This is simulated
by recognizing domains that are in the same SCOP[12] (ver.
1.53) superfamily, but not in the same family, using the
procedure described in [13]. We used the files compiled by
the authors of [19]. For each of the 54 families tested,
we computed the ROC (Receiving Operator Characteristic)
to measure the performance of a SVM based on the MI
kernel (the ROC score is the normalized area under the curve
which plots the number of true positives as a function of false
positives). We tested different parameters of our kernel, and
compared its performance with the mismatch kernel presented
in [16], which performed state-of-the-art accuracy level when
published and can also be implemented in linear time. The
classification and results were led using the publicly available
Gist 2.0.5 implementation of SVM2, applying a 2-norm soft
margin by adding a diagonal factor to the kernel matrix equal
to the exact proportion of positives in the dataset (diagonal
factor of one) without any specific tuning of parameters.
Our kernel has several parameters. The depthD, the width σ

and the branching probability ε are the most elementary to play
with; the selection of a Dirichlet mixture is a more difficult
choice. Given the large number of parameters and the risk
of overfitting the benchmark dataset by carefully optimizing
them, we only report preliminary results with two settings.
First we used a single Dirichlet distribution with parameters
1/2, . . . , 1/2 (known as the Jeffrey or the Krichevski-Trofimov
prior [28]), with D = 5, σ = 5, ε = 0.5. Second, we used a
basic 3 component Dirichlet mixture that models three classes
of amino-acids (hydrophobic/hydrophilic/highly conserved).
This mixture, called hydro-cons.3comp, was downloaded
from a Dirichlet mixture repository3. Other parameters were
set to D = 4, σ = 1 and ε = 0.5.
Figure 2 plots the total number of families for which

a given methods exceeds a ROC score threshold. There is
no significant difference between the three methods. The
mismatch kernel seems to perform better on families with large
ROC, while the MI kernels tend to outperform the mismatch
kernel for families with a ROC below 0.85. This observation
is encouraging as it suggests that MI kernels might be better
adapted to difficult problems, corresponding to low sequence
similarity, than the mismatch kernel, although our kernel is
only based on the same features as the spectrum kernel [15]
which is known to perform worse than the mismatch kernel
tested.

VII. CONCLUSION
We introduced a novel class of kernels for sequences that

are fast to compute and have the flexibility to include prior
knowledge through the definition of probabilistic models and

2http://microarray.cpmc.columbia.edu/gist/download.html
3http://www.cse.ucsc.edu/research/compbio/dirichlets/

10

20

30

40

50

0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1

No mixture
3 component mixture

Mismatch 5-1

Fig. 2. Performance of three kernels on the problem of recognizing domain’s
superfamily. The curve shows the total number of families for which a given
methods exceeds a ROC score threshold.

prior distribution. The kernel is a mutual infofmation kernel
based on a family of context-tree models, and makes a link
between the string kernels and the theory of universal source
coding. On a benchmark experiment of remote homology de-
tection it performs at a state-of-the-art level. Further accuracy
improvements are expected from a more careful tuning of the
parameters, on the one hand, and from the implementation of
sampling strategies to derive extended sets of transitions X
from a single sequence mx by incorporating mismatches for
instance.

VIII. ACKNOWLEDGMENTS
The authors would like to thank anonymous reviewers

for their remarks as well as Tatsuya Akutsu, Hiroto Saigo,
Hiroyuki Nakahara and Jérémie Jakubowicz for fruitful dis-
cussions.

REFERENCES
[1] G. Bejerano and G. Yona. Modeling protein families using probabilistic

suffix trees. In S. Istrail, P. Pevzner, and M. Waterman, editors, Pro-
ceedings of the3rd Annual International Conference on Computational
Molecular Biology (RECOMB), pages 15–24, Lyon, France, 1999. ACM
Press.

[2] A. Ben-hur and D. Brutlag. Remote homology detection: a motif based
approach. Bioinformatics, 2003. To appear.

[3] C. Berg, J. P. R. Christensen, and P. Ressel. Harmonic Analysis on
Semigroups. Springer-Verlag, 1984.

[4] B. E. Boser, I. M. Guyon, and V. N. Vapnik. A training algorithm
for optimal margin classifiers. In Proceedings of the 5th annual ACM
workshop on Computational Learning Theory, pages 144–152. ACM
Press, 1992.

[5] M. P. Brown, R. Hughey, A. Krogh, I. S. Mian, K. Sjölander, and
D. Haussler. Using Dirichlet mixture priors to derive hidden Markov
models for protein families. In Proc. of First Int. Conf. on Intelligent
Systems for Molecular Biology, pages 47–55, Menlo Park, CA, 1993.
AAAI/MIT Press.

[6] O. Catoni. Statistical learning theory and stochastic optimization, Saint-
Flour lecture notes. Springer Verlag, to appear.

[7] T. M. Cover and J. A. Thomas. Elements of Information Theory. Wiley,
New York, 1991.

[8] R. Durbin, S. Eddy, A. Krogh, and G. Mitchison. Biological sequence
analysis - Probabilistic models of proteins and nucleic acids. Cambridge
University Press, Cambridge, UK, 1998.

[9] E. Eskin, W. Noble, and Y. Singer. Protein family classification using
sparse markov transducers. Proceedings of the Eighth International
Conference on Intelligent Systems for Molecular Biology, August 2000.

[10] D. Haussler. Convolution kernels on discrete structures. Technical report,
UC Santa Cruz, 1999.

[11] S. Hua and Z. Sun. Support vector machine approach for protein
subcellular localization prediction. Bioinformatics, 17(8):721–728, 2001.

[12] T. Hubbard, A. Murzin, S. Brenner, and C. Chothia. Scop: a structural
classification of proteins database, 1997.

[13] T. Jaakkola, M. Diekhans, and D. Haussler. A discriminative framework
for detecting remote protein homologies. Journal of Computational
Biology, 7(1,2):95–114, 2000.

[14] H. Kashima, K. Tsuda, and A. Inokuchi. Marginalized kernels between
labeled graphs. In T. Faucett and N. Mishra, editors, Proceedings of the
Twentieth International Conference on Machine Learning, pages 321–
328. AAAI Press, 2003.

[15] C. Leslie, E. Eskin, and W. S. Noble. The spectrum kernel: a string
kernel for svm protein classific ation. In R. B. Altman, A. K. Dunker,
L. Hunter, K. in Lauerdale, and T. E. Klein, editors, Proceedings of
the Pacific Symposium on Biocomputing 2002, pages 564–575. World
Scientific, 2002.

[16] C. Leslie, E. Eskin, J. Weston, and W. S. Noble. Mismatch string
kernels for svm protein classification. In S. Becker, S. Thrun, and
K. Obermayer, editors, Advances in Neural Information Processing
Systems 15, Cambridge, MA, 2003. MIT Press.

[17] L. Liao and W. S. Noble. Combining pairwise sequence similarity and
support vector machines for remote protein homology detection. In Pro-
ceedings of the Sixth Annual International Conference on Computational
Molecular Biology, pages 225–232, 2002.

[18] I. Nemenman, F. Shafee, and W. Bialek. Entropy and inference, revisited.
In T. G. Dietterich, S. Becker, and Z. Ghahramani, editors, Advances
in Neural Information Processing Systems 14, Cambridge, MA, 2002.
MIT Press.

[19] W. S. Noble and L. Liao. Combining pairwise sequence similarity
and support vector machines for remote protein homology detection.
Proceedings of the Sixth Annual International Conference on Research
in Computational Molecular Biology, pages 225–232, 2002.

[20] B. Schölkopf and A. J. Smola. Learning with Kernels: Support Vector
Machines, Regularization , Optimization, and Beyond. MIT Press,
Cambridge, MA, 2002.

[21] B. Schölkopf, K. Tsuda, and J.-P. Vert. Kernel Methods in Computa-
tional Biology. MIT Press, Cambridge, MA, 2004. To appear.

[22] B. Schölkopf, J. Weston, E. Eskin, C. Leslie, and W. S. Noble. A kernel
approach for learning from almost orthogonal patterns. In T. Elomaa,
H. Mannila, and H. Toivonen, editors, Proceedings of ECML 2002, 13th
European Conference on Machine Learning, Helsinki, Finland, August
19-23, 2002, volume 2430 of Lecture Notes in Computer Science, pages
511–528. Springer, 2002.

[23] M. Seeger. Covariance kernels from bayesian generative models. In
Advances in Neural Information Processing Systems 14, Cambridge,
MA. MIT Press.

[24] V. N. Vapnik. Statistical Learning Theory. Wiley, New-York, 1998.
[25] J.-P. Vert. A tree kernel to analyze phylogenetic profiles. Bioinformatics,

18:S276–S284, 2002.
[26] J.-P. Vert, H. Saigo, and T. Akutsu. Local alignment kernels for protein

sequences. In B. Scholkopf, K. Tsuda, and J.-P. Vert, editors, Kernel
Methods in Computational Biology. MIT Press, 2004.

[27] C. Watkins. Dynamic alignment kernels. In A. Smola, P. Bartlett,
B. Schölkopf, and D. S. rmans, editors, Advances in Large Margin
Classifiers, pages 39–50. MIT Press, Cambridge, MA, 2000.

[28] F. M. J. Willems, Y. M. Shtarkov, and T. J. Tjalkens. The context-
tree weighting method: basic properties. IEEE Transancations on
Information Theory, pages 653–664, 1995.

