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Abstract

We propose novel approaches to cast the
widely-used family of Dynamic Time Warp-
ing (DTW) distances and similarities as pos-
itive definite kernels for time series. To this
effect, we provide new theoretical insights on
the family of Global Alignment kernels intro-
duced by Cuturi et al. (2007) and propose al-
ternative kernels which are both positive def-
inite and faster to compute. We provide ex-
perimental evidence that these alternatives
are both faster and more efficient in classifi-
cation tasks than other kernels based on the
DTW formalism.

1. Introduction

Kernel methods (Hofmann et al., 2008) have been suc-
cessfully applied in the last decade on a large variety of
datatypes, such as images (Harchaoui & Bach, 2007),
graphs (Vishwanathan et al., 2008) or strings on finite
alphabets (Sonnenburg et al., 2007) to quote but a few
recent references. Paired with well understood tools
such as the SVM, the definition of a kernel on struc-
tured objects can simplify considerably the analysis
of challenging datasets. Our goal in this paper is to
follow this line of research and provide practitioners
with versatile kernels to compare time series. We ar-
gue that this remains an important subject because,
despite their ubiquity in science and technology, time
series as a general datatype have been comparatively
the subject of less study in the kernel literature.

Despite notable attempts by Jebara et al. (2004, §4.5)
and Vishwanathan et al. (2007) to use probabilistic ar-
guments to define positive definite (p.d.) kernels, the
gold standard to compare time series remains the Dy-
namic Time Warping (DTW) distance. The DTW
framework has been extensively studied since it was
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first proposed by Sakoe & Chiba (1970) and used since
in thousands of application papers. Unfortunately, the
DTW distance cannot be used rigorously within the
kernel methods framework. Indeed, the DTW dis-
tance is not rigorously a distance and is known not
to be negative definite since it does not satisfy the tri-
angle inequality (Bahlmann et al., 2002; Müller, 2007,
p.72), and as a result cannot be used to define a p.d.
kernel. The lack of positive definiteness in a kernel
contradicts most of the mathematical foundations of
kernel methods, from the theory of reproducing kernel
Hilbert spaces to their convex optimization machinery.

The DTW distance has been used nonetheless with
kernel machines by many authors (Bahlmann et al.,
2002; Shimodaira et al., 2002; Zhou et al., 2010, etc.)
who correct numerically any deficiency of the Gram
matrices produced by DTW distances or more sim-
ply consider their square (Gudmundsson et al.). Other
authors have taken some liberties with the original def-
inition of the DTW distance in order to define p.d.
kernels. For instance, Hayashi et al. (2005) propose to
embed time series in Euclidean spaces such that the
distance of such representations approximates that of
the DTW. Cuturi et al. (2007) use the soft-minimum
(rather than the minimum) of the costs of all the align-
ments that can map a time series onto another to de-
fine a positive definite kernel.

None of these references consider the most significant
limitation of DTW distances, namely their quadratic
computational complexity, which scales in O(nm) with
the lengths n and m of the time series to be com-
pared. This paper builds upon the family of Global
Alignment (GA) kernels (Cuturi et al., 2007) to pro-
pose DTW-inspired kernels that are fast to compute
and positive definite. We start this paper with a brief
review of global alignment kernels in Section 2 and
follow in Section 3 with new results and insights for
these kernels. Section 4 presents the faster variations
we coin down as triangular global alignment kernels.
We conclude this paper with promising experimental
results in Section 5.
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2. Review of Global Alignment Kernels

Global alignment kernels have been relatively success-
ful in different application fields (Joder et al., 2009;
Ricci et al., 2010; de Vries & van Someren, 2010) and
shown to be competitive when compared with other
time series kernels.

2.1. Alignments and the DTW framework

Let XN be the set of discrete-time time series tak-
ing values in an arbitrary space X . An alignment
π between two time series x = (x1, · · · , xn) and
y = (y1, · · · , ym) of lengths n and m respectively is
a pair of increasing integral vectors (π1, π2) of length
p ≤ n+m− 1 such that 1 = π1(1) ≤ · · · ≤ π1(p) = n
and 1 = π2(1) ≤ · · · ≤ π2(p) = m, with unitary incre-
ments and no simultaneous repetitions. Namely, for
all indices 1 ≤ i ≤ p − 1, the increment vector of π
belongs to a set of 3 elementary moves which can be
represented as →, ↑ and ր moves,

(

π1(i+ 1) − π1(i)
π2(i+ 1) − π2(i)

)

∈

{(

0
1

)

,

(

1
0

)

,

(

1
1

)}

. (1)

The two coordinates π1 and π2 of the alignment π are
also known in the DTW literature as warping func-
tions. Note that alignments are only constrained by n
and m, the respective lengths of x and y. We write
A(n,m) for the set of all alignments between two time
series of length n andm. In its simplest form the DTW
distance between x and y is defined as

DTW(x,y)
def
= min

π∈A(n,m)
Dx,y(π), (2)

where, writing |π| for the length of π, the cost

Dx,y(π)
def
=

|π|
∑

i=1

ϕ
(

xπ1(i), yπ2(i)

)

, (3)

is defined by a local divergence ϕ that measures the
discrepancy between any two points xi and yj observed
in x and y. When X = R

d, ϕ can be typically defined
as the squared Euclidean distance ϕ(x, y) = ‖x− y‖2.

2.2. Soft-Minimum of All Alignment Scores

The Global Alignment (GA) kernel is defined as the ex-
ponentiated soft-minimum of all alignment distances,

kGA(x,y)
def
=

∑

π∈A(n,m)

e−Dx,y(π). (4)

Equation (4) can be rewritten using the local similarity

function κ induced from the divergence ϕ as κ
def
= e−ϕ:

kGA(x,y) =
∑

π∈A(n,m)

|π|
∏

i=1

κ(xπ1(i), yπ2(i)).

Cuturi et al. (2007) argue that the similarity described
by kGA incorporates the whole spectrum of costs
{Dx,y(π), π ∈ A(n,m)} and provides thus a richer
statistic than the minimum of that set, which is the
sole quantity considered by the DTW distance. They
also prove or state the following results:

1. kGA is p.d. if κ/(1 + κ) is p.d. on X .

2. kGA is likely to yield diagonally dominant Gram
matrices when used on real-life datasets.

3. The computational effort required to compute
kGA scales in O(mn), similar to the DTW dis-
tance. More precisely, the value of kGA(X,Y ) is
equal to Mn,m where the coefficients Mi,j are de-
fined by the boundary values M0,0 = 1,M0,i =
Mj,0 = 0 and the recurrence

Mi,j = κ(xi, yj) (Mi−1,j−1 +Mi,j−1 +Mi−1,j) (5)

We study more closely statements 1 and 2 in Section 3
and propose a variation of the GA kernel in Section 4
that has lower complexity than O(mn).

3. On Some Issues Raised by GA

Kernels

We recall that a positive definite kernel function κ
is infinitely divisible if for all n ∈ N, κ1/n is also
p.d. (Berg et al., 1984, §3.2.6). For kernels κ that take
positive values, κ is infinitely divisible if and only if
− log(κ) is negative definite (n.d.). For a p.d. ker-
nel κ we write κ̃(x, y) for its normalized counterpart
κ(x, y)/

√

κ(x, x)κ(y, y).

3.1. Diagonal dominance of kGA

Cuturi et al. (2007) conjecture that kGA will pro-
duce diagonally dominant Gram matrices K on most
datasets in the sense that the sum of the magnitude
of off-diagonal entries of such Gram matrices is far
smaller than their trace. Diagonal dominance of Gram
matrices is an undesirable property, since it implies
that all points in a training set are orthogonal to each
other in the corresponding feature space. This conjec-
ture has shed some doubts on the practical applicabil-
ity of global alignment kernels (Gudmundsson et al.,
p.2774) which we would like to dissipate in this sec-
tion by showing that diagonal dominance can in fact
be avoided in most practical cases.

We assume that the divergence ϕ is null on the diag-
onal, namely that ϕ(x, x) = 0 for any x ∈ X . Let κ
be modified to incorporate an exponent λ > 0, that is

κ
def
= e−λϕ. Obviously, kGA(x,y) →

λ→0
cardA(n,m).
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The cardinal of A(n,m) is known as the Delannoy
number D(n,m) (Sulanke, 2003; Banderier & Schwer,
2005) and thus kGA(x,y) becomes in the limit a ker-
nel exclusively defined by the lengths of x and y. Two
cases may thus arise when applying kGA on a sample
{X1, · · · , Xp} of time series,

• All time series Xi have same length n. The p× p
Gram matrix generated by kGA varies between Ip
as λ goes to infinity, to D(n, n)1p,p when λ is set
to 0. Diagonal dominance, if any, can be easily
corrected for with a smaller λ value.

• The lengths of all time series vary freely and are
upper-bounded by an arbitrary length n. In this
case kGA varies between Ip in the limit λ → ∞
and a p × p matrix whose entries are sampled in
the Delannoy matrix, D(|Xi|, |Xj |), 1 ≤ i, j ≤ n.

Therefore, diagonal dominance only arises as an is-
sue when the sequences to be compared have different
lengths. To illustrate this point, we investigate the
case where p = n sequences are compared, with length
spanning 1 to n and study the diagonal dominance of
the matrix of Delannoy numbers D = [D(i, j)]1≤i,j≤n

in Lemma 1 below.

The combinatorics literature provides a few useful re-
sults (Sulanke, 2003) to prove this lemma. Among
them, the formula D(i, j) =

∑∞
k=1 2k

(

i
k

)(

j
k

)

highlights
the fact that D is a positive definite kernel on integers,
with infinite but sparse feature map

(

2k/2
(

i
k

))

k∈N
.

Central Delannoy numbers Dk
def
= D(k, k), which ap-

pear in the diagonal of D, are also known to follow
the recurrence

Dk+1 =
3(2k + 1)

k + 1
Dk −

k

k + 1
Dk−1.

Finally, we will use the inequality Dk+1 > 3Dk which
can be derived by considering Equation (5) and setting
λ = 0, yielding D(i+1, j+1) = D(i, j)+D(i+1, j)+
D(i, j + 1). Lemma 1 shows that D is not diagonally
dominant, since the sum of its off-diagonal coefficients
is comparable to its trace.

Lemma 1.

n
∑

i,j=1,i6=j

D(i, j) >

(

1 −
n

9n− 1

) n
∑

i=1

Di.

Proof. The sum of all coefficients of D can be ex-
pressed as a central Delannoy number,

n
∑

i,j=1

D(i, j) =

∞
∑

k=1

2k ·
∑n

i=1

(

i
k

)

·
∑n

j=1

(

j
k

)

=

∞
∑

k=1

2k

(

n+ 1

k + 1

)2

=
Dn+1 − 1

2
.
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Figure 1. Normalized Delannoy numbers D̃(i, j), i, j ≤ 50.

Consider now the ratio ρ between this sum and the
trace of the Delannoy matrix D,

ρ =
Dn+1−1

2

trD
=

3
(

1 − 1
2(n+1)

)

Dn −
(

1 − 1
2(n+1)

)

Dn−1

Dn +Dn−1 +
∑n−2

k=1 Dk

.

Since
∑n−2

k=1 Dk <
∑n−2

k,l=1D(k, l) = 1
2Dn−1 −

1
2 ,

ρ >
3

(

1 − 1
2(n+1)

)

Dn −
(

1 − 1
2(n+1)

)

Dn−1

Dn + 3
2Dn−1 −

1
2

.

One can check that the two derivatives of the map fn

defined on [1,∞)2 as

fn : (x, y) 7→
3

(

1 − 1
2(n+1)

)

x−
(

1 − 1
2(n+1)

)

y

x+ 3
2y −

1
2

are positive. fn is thus strictly increasing in both x and
y. Let T be a constant such that Dn−1 > T . Since
Dn > 3Dn−1 > 3T we have that fn(Dn, Dn−1) >
fn(3T, T ). Setting T = n+1 gives ρ > 2− n

9n−1 which
closes the proof.

Numerical evidence shows that the ratio between
off-diagonal and diagonal coefficients of the Delan-
noy matrix is slightly higher than the bound ≈ 8/9
given here. This ratio is for instance ≈ 1.4 for
n = 100. For illustration purposes we plot in Fig-
ure 1 the values of the normalized Delannoy numbers

D̃(i, j)
def
= D(i, j)/

√

D(i, i)D(j, j) for i, j ≤ 50 which
would appear if one were to use the normalized kernel
k̃GA with λ = 0 on a dataset of time series of length
1 to n. We thus observe empirically that for λ ≈ 0,
k̃GA(x,y) is not negligible when 1

2 ≤ n/m ≤ 2. To
conclude this section, we have thus shown that for a
properly chosen λ, GA kernels can compare sequences
as long as they share similar lengths, in the sense that
one is not longer than twice the length of the other.
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3.2. Geometric Divisibility of Local Kernels

Cuturi et al. (2007, Theorem 1) prove that a GA ker-
nel kGA defined through a local kernel κ is positive
definite if κ/(1+κ) is positive definite. One may won-
der whether this result cannot be generalized to all

positive definite kernels κ, regardless of the positive
definiteness of κ/(1 + κ). We use the theory of map-
ping kernels to give a negative answer to this question.

Mapping Kernels Shin & Kuboyama (2008) have
recently generalized Haussler’s (1999) approach to de-
fine kernels on discrete structures by introducing map-
ping kernels, which are kernels of the form

k(x,y) =
∑

(x,y)∈M(x,y)

k(x, y),

where k is a local kernel on substructures of x and y in
X and mapping sets M are set-valued functions such
that M(x,y) ⊂ X 2. The GA kernel kGA is a mapping
kernel when M and k are defined with alignments

MGA(x,y) = {(xπ1
,yπ2

) |π = (π1, π2) ∈ A(n,m)},

k(xπ1
,yπ2

) =

|π|
∏

i=1

κ(xπ1(i),yπ2(i)).

Shin & Kuboyama prove that a mapping kernel is p.d.
for all p.d. kernels κ if and only if M(x,y) is a tran-
sitive set, that is ∀ (x,y, z) ∈ X 3,

(x, y) ∈ M(x,y), (y, z) ∈ M(x, z) ⇒ (x, z) ∈ M(x, z).

Lemma 2. The mapping set MGA is not transitive.

Proof. Consider two time series x and z of length 2
and y of length 3. It is clear that
( 1,1,2

1,2,3

)

∈ A(2, 3),
( 1,2,3

1,1,2

)

∈ A(3, 2), yet
( 1,1,2

1,1,2

)

/∈ A(2, 2),

since the latter alignment does not satisfy the increas-
ing property defined in Equation (1).

The mapping kernel theorem thus proves that GA ker-
nels kGA cannot be p.d. for all local kernels κ. This
negative result highlights the fact that additional con-
ditions on κ are needed to obtain p.d. kernels kGA.
The condition that κ/(1 + κ) is p.d., which we coin
down geometric divisibility in Definition 1, can be in-
terpreted as a sufficient condition in this context.

Geometric Divisibility Consider the map τ from
nonnegative scalars to [0, 1[, τ : x 7→ x

1+x and note that

τ−1(x) = x
1−x . By abuse of notation, for any nonnega-

tive valued function f we write τf for the composition
τ ◦ f of τ and f and for any [0, 1[ valued function g we
write τ−1g for τ−1 ◦ g.

Definition 1 (Geometric Divisibility). Let f be a non-

negative valued function on X × X . f is said to be

geometrically divisible if τf is positive definite.

For a geometrically divisible (g.d.) function f , |τf | <
1 and thus f can be written as the geometric series
f =

∑∞
i=1(τf)i, giving the definition its name. Any

g.d. function f is by definition a sum of p.d. kernels,
and is thus necessarily positive definite.

Geometric divisibility was mentioned in (Cuturi et al.,
2007) as a “mild” condition on the local kernel κ to
ensure that the resulting GA kernel kGA is positive def-
inite. Contrary to what is suggested by Cuturi et al.,
the Gaussian kernel is not geometrically divisible. In-
deed, this can be exhibited numerically by showing
that a suitable Gram matrix does not have that prop-
erty1. We conjecture that other related kernels, such
as the Laplace kernels2 are not geometrically divisible
either. The next result shows that infinite divisibility
is preserved when applying τ−1 to a given kernel in
order to obtain a geometrically divisible kernel.

Lemma 3. For any infinitely divisible kernel κ such

that 0 < κ < 1, τ−1κ is g.d. and infinitely divisible.

Proof. Note that

− log(τ−1κ) = − logκ+ log(1 − κ)

= − logκ+

ˆ 1

t=0

−κ

1 − tκ
dt. (6)

Since for each t ≤ 1, |tκ| < 1 the identity

κ

1 − tκ
=

∞
∑

i=0

tiκi+1,

holds, the right hand-side of Equation (6) is the sum
of a n.d. kernel (by infinite divisibility of κ) and minus
a sum of p.d. kernels. − log(τ−1κ) is thus n.d., which
proves τ−1κ’s infinite divisibility.

Considering the Gaussian kernel κσ first, the kernel
τ−1(κσ/2) = κσ/(2 − κσ) is thus both infinitely and

geometrically divisible. Hence its logarithm

φσ(x, y)
def
= 1

2σ2 ‖x− y‖2 + log

(

2 − e−
‖x−y‖2

2σ2

)

, (7)

is a n.d. kernel that can be scaled by a factor λ to
define a local kernel e−λφσ that can be easily tuned to
correct any diagonal dominance as suggested in Sec-
tion 3.1. Note that a similar construction can be car-
ried out with Laplace kernels.

1e.g., matlab code to test this: rand(’state’,0);
o=ones(10,1); A=rand(2,10); B=sum(A.^2);
K=exp(2*A’*A-kron(o,B)-kron(o’,B’)); eig(K./(1+K))

2exp(−λ‖x − y‖a), 0 < a < 2, λ > 0
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4. Triangular Global Alignment Kernels

Itakura (1975) and Sakoe & Chiba (1978) proposed to
speed up the computation of DTW distances through
additional constraints on alignments. Similar ideas
can be applied to GA kernels as shown in this section.

4.1. Constrained Alignments for DTW

Exact DTW distances are expensive to compute for
time series of dimension d since they require O(dnm)
elementary operations at each evaluation. To cope
with this cost when using DTW within nearest neigh-
bor methods, inexpensive lower bounds on DTW(x,y)
can be used to screen and discard all time series y in
a database that have a poor match with a time se-
ries of interest x (Lemire, 2009). Unfortunately such
approaches are ineffective with kernel methods since
the latter require to compute all pairwise similarities
of a database of time series in the training phase.
The DTW algorithm can be sped up by only con-
sidering a small subset of all alignments as detailed
by Rabiner & Juang (1993, §4.7). These constraints
can be formulated with weights γi,j that modify the
cost function of Equation (3) into

Dγ
x,y(π)

def
=

|π|
∑

i=1

γπ1(i),π2(i) ϕ(xπ1(i), yπ2(i)), (8)

For instance, Sakoe & Chiba (1978) define the band

γi,j =

{

1, if |i− j| < T

∞, if |i− j| ≥ T
, (9)

which ensures that only alignments π that are close
to the diagonal are considered, namely such that π1(i)
and π2(i) remain close as i grows. This increase in
speed comes at the cost of an approximation, since the
resulting optimal path may turn out to be suboptimal.

4.2. GA Kernels with Position Kernels

Weights introduced in Equation (8) can be naturally
extended to GA kernels. Indeed, any p.d. kernel ω
on N, rather than a weight γi,j , can be paired with a
kernel κ on X to form GA kernels:

Remark 1. Let κ be a kernel on X and ω a kernel on

N. Then using τ−1(ω⊗κ) as a local kernel, the kernel

kGA is p.d. on time series of points taken in N×X .

With this simple argument, points enumerated in a
time series x can be described with their position as
(i, xi) for 1 ≤ i ≤ n. The kernel ω modulates the simi-
larity of two points (xi, yj) by taking into account their
respective location i and j while κ quantifies the sim-
ilarity of xi and yj . We consider in this paper kernels

ω(i, j) that only depend on |i − j|, namely radial ba-
sis kernels ω(i, j) = ψ(|i− j|) where ψ is a real-valued
function on N. Such kernels on integers are also known
as Toeplitz kernels. In the context of Global Alignment
kernels, Toeplitz kernels are more appealing if they are
compactly supported as discussed in the next section.

4.3. Compactly Supported Toeplitz Kernels

A Toeplitz kernel ω is compactly supported of order
T ∈ N if for q ≥ T, ψ(q) = 0 and ψ(T − 1) 6= 0.
Using such a kernel within GA kernels has obvious
advantages:

Theorem 1. Let κ be a kernel on X × X and ω a

compactly supported Toeplitz kernel of order T . Then

using τ−1(ωκ) as a local kernel, kGA(x,y) can be com-

puted with O(T min(n,m)) operations. Furthermore,

kGA(x,y) is null when |n−m| > T .

Proof. Since ω has compact support, all elements of
the n × m Gram matrix that are off the diagonal
by C are null. The recursive iteration Mi+1,j+1 =
Ki,j (Mi,j +Mi,j+1 +Mi+1,j) only has to be applied
on the portion of the Gram matrix that is non-zero,
which entails up to (2T − 1)min(n,m) − T (T − 1)/2
updates, as illustrated in Figure 2.

The Sakoe & Chiba band defined as e−γi,j = δ|i−j|<T

is symmetric and Toeplitz but not p.d., and cannot
be used as a local kernel. Compactly supported ker-
nels were studied by Gneiting (2002) who highlights in
particular the triangular kernel for integers,

ω(i, j) =

(

1 −
|i− j|

T

)

+

, (10)

which is known to be p.d. in R but not in higher di-
mensions. Genton (2002, Figure 1) provides an inter-
esting discussion on its characteristics. We consider
this kernel in the following and define Triangular GA
(TGA) kernels as GA kernels obtained when pairing
the triangular kernel of Equation (10) with any local
kernel κ following the construction given in Remark 1.

5. Experiments

5.1. Databases

In addition to different classification tasks on datasets
taken from the UCI Machine Learning reposi-
tory (Frank & Asuncion, 2010) we have compiled a
database of freeway traffic, the PEMS database, which
we introduce below. All datasets describe multivari-
ate time series of dimension d and variable length n
associated with one of many possible classes.
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Database d n range, med(n) classes # points

Japanese Vowels 12 7-29, 15 9 640
Libras 2 45 15 945
Handwritten Characters 3 60-182, 122 20 2858
AUSLAN 22 45-136, 55 95 2465
PEMS 963 144 7 440

Table 1. Characteristics of the different databases considered in the benchmark test

K1,1

(1, y1) (2, y2) (3, y3) (4, y4) (5, y5) (6, y6) (7, y7)

Ki,j = 0

M4,3

M5,3

M4,4

M2,4

M5,4 =

M3,5 =

K5,7Ki,j = 0 ×K5,4

M3,4

×K3,5

(5, x5)

(4, x4)

(3, x3)

(2, x2)

(1, x1)

Figure 2. Illustration of the GA kernel recursion when us-
ing a Compactly-supported Toeplitz kernel of order T = 3.
The recursion Mi+1,j+1 = Ki,j (Mi,j + Mi,j+1 + Mi+1,j)
implies that the computation of Mi,j can be bypassed
for indexes such that Ki,j = 0 where Ki,j stands for
τ−1(ω ⊗ κ) ((i, xi) , (j, yj)).

PEMS database We have downloaded 15 months
worth of daily data from the California Department of
Transportation PEMS website3. The data describes
the occupancy rate, between 0 and 1, of different car
lanes of San Francisco bay area freeways. The mea-
surements cover the period from Jan. 1st 2008 to Mar.
30th 2009 and are sampled every 10 minutes. We con-
sider each day in this database as a single time series
of dimension 963 (the number of sensors which func-
tioned consistently throughout the studied period) and
length 6×24 = 144. The task is to classify each day as
the correct day of the week, from Monday to Sunday,
e.g. label it with an integer in {1, 2, 3, 4, 5, 6, 7}. We
remove public holidays from the dataset, as well as two
days with anomalies (March 8th 2009 and March 9th
2008) where all sensors were muted between 2:00 and
3:00 AM. This results in a database of 440 time series.

5.2. Kernels, Parameters and Methodology

We consider the following kernels in our benchmark:

DTW kernel Following Haasdonk & Bahlmann
(2004) the DTW distance introduced in Equation (2)

3http://pems.dot.ca.gov

can be used as a pseudo n.d. kernel to define the
pseudo p.d. kernel kDTW = e−

1
t
DTW.

DTW kernel with Sakoe-Chiba Constraints

Sakoe & Chiba’s constrained DTW distance,

DTWSC(x,y) = min
π∈A(n,m)

Dγ
x,y(π),

where the weights γi,j are defined Equation (9) can

also yield a pseudo p.d. kernel, kSC = e−
1
t
DTWSC .

DTAK kernel Shimodaira et al. (2002) consider a
variant of the DTW to define the pseudo p.d. kernel

kDTAK(x,y) = max
π∈A(n,m)

|π|
∑

i=1

κσ(xπ1(i), yπ2(i)).

To be consistent with the definition kDTW and kSC we
consider its exponentially scaled expression (kDTAK)

1
t .

GA Kernel We use the GA kernel kGA seeded with
the local kernel κ = e−φσ where the negative definite
kernel φσ is given in Equation (7).

TGA Kernel We consider the Gaussian kernel paired
with the triangular kernel to define the local kernel

τ−1(ω ⊗ 1
2κσ)(i, x; j, y) =

ω(i, j)κσ(x, y)

2 − ω(i, j)κσ(x, y)
.

The kernels considered in these experiments are renor-
malized before using libsvm’s implementation of sup-
port vector machines. We consider a doubly nested CV
scheme to obtain estimates of classification error rates.
Namely, each dataset is first randomly split into 3 bal-
anced folds. For each kernel, the parameters taken
within an adaptive grid described in Table 2 that have
the lowest mean classification-error on the training fold
(using 3 folds 2 repeats cross-validations and selecting
the C constant of libsvm in {1, 102, 104}) are used to
test the accuracy of the kernel on the remaining two
folds of data with a SVM trained on the training fold.
When the Gram matrix of the training fold is not pos-
itive definite, which happens only with and relatively
often for kDTW, kSC and kDTAK, we regularize it with
a ridge to ensure it becomes positive definite. Such
a split is repeated 3 times, yielding 3 × 3 error rates
estimates for each database/kernel pair. We report in
Figure 3 the mean and the standard deviation of each
group of 9 error estimates.
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Kernel Parameters Parameter Line/Grid

kDTW t t ∈ {0.2, 0.5, 1, 2, 5} · med(DTW(x,x))
kSC t, T t ∈ {0.2, 0.5, 1, 2, 5} · med(DTWSC(x,y)), T ∈ {0.25, 0.5} · med(|x|)
kDTAK t, σ t ∈ {0.2, 0.5, 1, 2, 5} · med(− log kDTAK(x,y)), σ ∈ {0.2, 0.5, 1, 2} ·med(‖x − y‖)

kGA σ σ ∈ {0.2, 0.5, 1, 2, 5} · med(‖x − y‖) ·
p

med(|x|)

kTGA σ, T σ ∈ {0.2, 0.5, 1, 2, 5} · med(‖x − y‖) ·
p

med(|x|), T ∈ {0.25, 0.5} ·med(|x|)

Table 2. Parameter grid for all kernels. med(f) stands for the empirical median of f computed on training sets. When
the arguments of f are time series x or y the median is computed by sampling over the entire training set in both variables
if necessary. When the arguments of f are vectors x or y, the vectors are sampled randomly within time series sampled
randomly in the training set. The · multiplication is elementwise, e.g. {1, 2, 3} · σ = {σ, 2σ, 3σ}.
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Figure 3. Mean and standard deviations of classification error rates on test folds, using a 3 folds 3 repeats cross validation
procedure for each kernel/database pair. Parameters were selected independently for each test iteration by applying an
adaptive grid search (Table 2) within each training fold, using a 3 folds 2 repeats cross validation.

5.3. Results and Discussion

Source codes for these experiments are available on
the author’s webpage. These experiments show that
GA and TGA kernels behave similarly and compare
favorably to all other DTW kernels considered here,
as pictured in Figure 3. The poor performance of the
DTW kernel suggests that it should be avoided in most
applications, to consider instead DTAK or (T)GA ker-
nels. We report in Figure 4 average error rates along
with the average runtime required to compute a sin-
gle kernel evaluation of TGA kernels as a function of
T . Note that for low T , the resulting kernel matrix is
sparse and non-zero only for time series of very simi-
lar length. When T = 1 the TGA kernel becomes de
facto a Gaussian kernel (with distance φσ) that can
only compare time series of equal length. As T in-
creases the TGA kernel converges to the GA kernel,
with substantial or negligible improvements in per-
formance, depending on the dataset. Yet, for most
databases T does not need to be increased significantly
to reach a performance that is comparable to that of
GA kernels, as illustrated in Figure 3, where T never
exceeds half the median length of time series in each
database as specified in Table 2. This leads however
to faster computations, as detailed in Figure 4.
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