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Regression, Classi�cation and other Supervised Tasks

� Two associated random variables

� A random variablex, taking values inX ,
� A random variabley, taking values inY.

� Two samples of (x; y) i.i.d. distributed from their joint law

� f (x1; y1); � � � ; (xn ; yn )g, n couples ofX � Y .

Challenge:predict y when given onlyx.

� In practice,�nd a function X ! Y for which f (x) is not too di�erent from y
on average.
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Binary Classi�cation

� Y = f� 1; 1g.

� f needs to be a functions that, givenx predicts a label,

f : X 7! f� 1; 1g

of course, many possible choices forf 's shape.

� We review herelinear hyperplanes inX = Rd �rst.

� We represent it inR2 for simplicity.

Next slides will cover an important algorithm, theSVM algorithm

� this algorithm can be naturally expressed in terms ofkernels. we review later
other algorithms for which this is also the case.

thanks to Jean-Philippe Vert for many of the following �gures and slides.
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Linear classi�er, some degrees of freedom
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Linear classi�er, some degrees of freedom
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Which one is better?
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A criterion to select a linear classi�er: the margin

VNU June 12-17 13



A criterion to select a linear classi�er: the margin

VNU June 12-17 14



A criterion to select a linear classi�er: the margin

VNU June 12-17 15



A criterion to select a linear classi�er: the margin

VNU June 12-17 16



A criterion to select a linear classi�er: the margin
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Largest Margin Linear Classi�er
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Support Vectors with Large Margin
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In equations

� The training set is a �nite set of n data/class pairs:

T = f (x1; y1); : : : ; (xN ; yN )g ;

wherex i 2 Rd and y i 2 f� 1; 1g.

� We assume (for the moment) that the data arelinearly separable, i.e., that
there exists(w ; b) 2 Rd � R such that:

(
w T x i + b > 0 if y i = 1 ;
w T x i + b < 0 if y i = � 1:
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How to �nd the largest separating hyperplane?

For the linear classi�erf (x) = w T x + b consider theinterstice de�ned by the
hyperplanes

� f (x) = w T x + b = +1

� f (x) = w T x + b = � 1

w.x+b=0

x2
x1

w.x+b > +1

w.x+b < -1
w

w.x+b=+1

w.x+b=-1
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The margin is 2=jjw jj

� Indeed, the pointsx1 and x2 satisfy:

(
w T x1 + b = 0 ;
w T x2 + b = 1 :

� By subtracting we getw T (x2 � x1) = 1 , and therefore:


 = 2 jjx2 � x1jj =
2

jjw jj
:

where
 is the margin.
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All training points should be on the appropriate side

� For positive examples (yi = 1 ) this means:

w T x i + b � 1

� For negative examples (yi = � 1) this means:

w T x i + b � � 1

� in both cases:
8i = 1 ; : : : ; n; y i

�
w T x i + b

�
� 1
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Finding the optimal hyperplane

� Find (w; b) which minimize:
jjw jj2

under the constraints:

8i = 1 ; : : : ; n; y i
�
w T x i + b

�
� 1 � 0:

This is a classical quadratic program onRd+1

linear constraints - quadratic objective
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Lagrangian

� In order to minimize:
1
2

jjw jj2

under the constraints:

8i = 1 ; : : : ; n; yi
�
w T x i + b

�
� 1 � 0:

� introduceone dual variable � i for each constraint ,

� namely, foreach training point . The Lagrangian is, for� � 0,

L (w ; b; � ) =
1
2

jjw jj2 �
nX

i =1

� i
�
yi

�
w T x i + b

�
� 1

�
:

VNU June 12-17 25



The Lagrange dual function

g(� ) = inf
w2 Rd;b2 R

(
1
2

kwk2 �
nX

i =1

� i
�
yi

�
w T x i + b

�
� 1

�
)

is only de�ned when

w =
nX

i =1

� i y i x i ; ( derivating w.r.t w) ( � )

0 =
nX

i =1

� i y i ; (derivating w.r.t b) ( �� )

substituting (� ) in g, and using(�� ) as a constraint, get the dual functiong(� ).

� To solve the dual problem,maximize g w.r.t. � .

� Strong duality holds. KKT gives us� i (y i
�
w T x i + b

�
� 1) = 0 , either � i = 0

or y i
�
w T x i + b

�
= 1 .

� � i 6= 0 only for points on the support hyperplanesf (x ; y )j y i (w T x i + b) = 1 g.
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Dual optimum

The dual problem is thus

maximize g(� ) =
P n

i =1 � i � 1
2

P n
i;j =1 � i � j yi yj xT

i x j

such that � � 0;
P n

i =1 � i y i = 0 :

This is a quadratic program onRn , with box constraints.
� � can be found e�ciently using dedicated optimization softwares
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Recovering the optimal hyperplane

� Once� � is found, we recover(w T ; b� ) corresponding to the optimal
hyperplane.

� w T is given byw T =
P n

i =1 yi � i xT
i ;

� b� is given by the conditions on the support vectors� i > 0, y i (w T x i + b) = 1 ,

b� = �
1
2

�
min

y i =1 ;� i > 0
(w T x i ) + max

y i = � 1;� i > 0
(w T x i )

�

� the decision function is therefore:

f � (x) = w T x + b�

=
nX

i =1

yi � i xT
i x + b� :

� Here thedual solution gives us directly theprimal solution.
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Interpretation: support vectors

a>0

a=0
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What happens when the data is not linearly separable?
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What happens when the data is not linearly separable?
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Soft-margin SVM

� Find a trade-o� betweenlarge margin and few errors.

� Mathematically:

min
f

�
1

margin(f )
+ C � errors(f )

�

� C is a parameter
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Soft-margin SVM formulation

� The margin of a labeled point(x ; y ) is

margin(x ; y ) = y
�
w T x + b

�

� The error is

� 0 if margin(x ; y ) > 1,
� 1 � margin(x ; y ) otherwise.

� The soft margin SVM solves:

min
w ;b

fk wk2 + C
nX

i =1

maxf 0; 1 � y i
�
w T x i + b

�
g

� c(u; y) = max f 0; 1 � yug is known as thehinge loss.

� c(w T x i + b;y i ) associates a mistake cost to the decisionw; b for examplex i .
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Dual formulation of soft-margin SVM

� The soft margin SVM program

min
w ;b

fk wk2 + C
nX

i =1

maxf 0; 1 � y i
�
w T x i + b

�
g

can be rewritten as

minimize kwk2 + C
P n

i =1 � i

such that y i
�
w T x i + b

�
� 1 � � i

� In that case the dual function

g(� ) =
nX

i =1

� i �
1
2

nX

i;j =1

� i � j y i y j xT
i x j ;

which is �nite under the constraints:
(

0 � � i � C ; for i = 1 ; : : : ; n
P n

i =1 � i y i = 0 :
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Interpretation: bounded and unbounded support vectors

C
a=0

0<a<C

a=

VNU June 12-17 37



Sometimes linear classi�ers are not interesting
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Solution: non-linear mapping to a feature space

2R

x1

x2

x1

x2

2

Let � (x) = ( x2
1; x2

2)0, w = (1 ; 1)0 and b = 1 . Then the decision function is:

f (x) = x2
1 + x2

2 � R2 = hw; � (x) i + b;
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Kernel trick for SVM's

� use a mapping� from X to a feature space,

� which corresponds to thekernel k:

8x; x0 2 X ; k(x ; x0) = h� (x); � (x0) i

� Example: if� (x) = �
��

x1

x2

��
=

�
x2

1
x2

2

�
, then

k(x; x0) = h� (x); � (x0) i = ( x1)2(x0
1)2 + ( x2)2(x0

2)2:
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Training a SVM in the feature space

Replace each xT x0 in the SVM algorithm by h� (x); � (x0) i = k(x ; x0)

� The dual problem is to maximize

g(� ) =
nX

i =1

� i �
1
2

nX

i;j =1

� i � j yi yj k(x i ; x j ) ;

under the constraints:
(

0 � � i � C; for i = 1 ; : : : ; n
P n

i =1 � i y i = 0 :

� The decision function becomes:

f (x) = hw; � (x) i + b�

=
nX

i =1

yi � i k(x i ; x) + b� :
(1)
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The kernel trick

� The explicit computation of � (x) is not necessary. The kernel k(x ; x0) is
enough.

� The SVM optimization for� works implicitly in the feature space.

� The SVM is a kernel algorithm: only need to inputK and y :

maximize g(� ) = � T 1 � 1
2� T (y T K y)�

such that 0 � � i � C; for i = 1 ; : : : ; nP n
i =1 � i y i = 0 :

� in the end the solutionf (x) =
P n

i =1 yi � i k(x i ; x ) + b.
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Kernel example: polynomial kernel

� For x = ( x1; x2)> 2 R2, let � (x) = ( x2
1;

p
2x1x2; x2

2) 2 R3:

K (x ; x0) = x2
1x02

1 + 2x1x2x0
1x0

2 + x2
2x02

2

= f x1x0
1 + x2x0

2g2

= f xT x0g2 :

2R

x1

x2

x1

x2

2
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Some demonstrations using Matlab

� playing with a few kernels and a few points
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File: mydemodata.mat, # of points K = 26
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SVM's: a particular case of a more general
framework, penalized estimation
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Empirical Risk Minimization

� Starting with f (x1; y1); � � � ; (xn ; yn )g, n couples ofX � Y ,

� A class of functionsF ,

� A cost functionc : Y � Y , c � 0, which penalizes discrepancies (hinge, least
squaresetc.)

� �nd a function which minimizes

f̂ = argmin
f 2 F

1
n

nX

i =1

c(f (x i ); yi )

and use thisf as a decision function.

� As usual in minimizations, we like:

� Convex problems, unique minimizers
� Stable solutions numerically.
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Linear least squares

� When X = Rd, Y = R,

� F = f x 7! � T x + b ; � 2 Rd ; b 2 Rg; c(y 1; y2) = ky1 � y2k2,

� The problem is known asregression with the least squares criterion.

� In this case, the minimizer

argmin
f 2 F

1
n

nX

i =1

kf (x i ) � y i k2 = argmin
� 2 Rd;b2 R

1
n

nX

i =1

k� T x i + b� y i k2

is unique assuming n > d and no degeneracy.

� Why?

R : (b; � ) !
1
n

nX

i =1

k� T x i + b� y i k2 =
1
n

kX T �
b
�

�
� yk2

is convex, whereX =

2

6
6
4

1 1 � � � 1
... ... � � � ...

x1 x2 � � � xn
... ... � � � ...

3

7
7
5 2 Rd+1 � n and y =

2

4
y1
...

yn

3

5 2 Rn .
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Linear least squares
� Notice that

R(b; � ) =
1
n

� �
b
�

� T
XX T �

b
�

�
� 2yT X T �

b
�

�
+ kyk2

�

� Let us take the gradient of that function

nr R = 2XX T �
b
�

�
� 2Xy

� Hence this gradient is zero for
�

b
�

�
= ( XX T ) � 1Xy

� XX T 2 Sn
+ . This works ifXX T 2 Rd+1 is invertible , that is XX T 2 Sn

++ .

� Remark:

XX T =

2

6
6
6
6
4

n n�x1 n�x2 � � � n �xd

n�x1

n�x2
...

n �xd

XX T

3

7
7
7
7
5

=
�

n n� T

n� XX T

�

whereX is simply thed � n sample matrix without the constant 1.
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Example in R3

� Sample of cars:x desribes weight and horsepower of a car.

� y is the miles-per-gallon : high is eco-friendly, low is bad.

1000
2000

3000
4000

5000 0
100

200
300

5

10

15

20

25

30

35

40

45

Horsepower
Weight

M
P

G

� The hyperplane �ts the data quite well,
�

b
�

� h
47:7694
� 0:0066
� 0:0420

i �
b
�

�
.
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Linear least-squares is not the ideal tool though...

� What happens whend � n? (XX T ) is no longer invertible ...

� high-dimensional data in genomics,
� images analysis (e.g.lots of features)

� What happens when(XX T ) is badly conditioned ( � min (XX T )
� max (XX T )

� 0)?

� if � min (XX T ) = 1 e � 10, � max
�
(XX T ) � 1

�
= 1e10!!

� Very bad numerical stability of the solution...

� When d � n, we might want to dovariable selection,

� i.e.pick a subsetd0 of the d variables which is relevant to predicty .
� i.e.favor vectors� such thatk� k0 = card � i 6= 0 is small.
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Penalized Least-Squares

� For all these problems, there is an appropriate penalization:

(�̂; b̂) = argmin
� 2 Rd;b2 R

1
n

nX

i =1

k� T x i + b� y i k2 + � k(�; b )k

� we recoverleast-square regressionwhen� = 0 ;
� ridge regression when� > 0 and k(�; b )k = k(�; b )k2

2 = b2 +
� P n

i =1 � 2
i

� 2
:

�
b
�

�
=

�
XX T + �

� 1 0 ::: 0
0 1 0 0... 0 . . . 0
0 0 0 1

�� � 1

Xy

� the lasso when� > 0 and k(�; b )k = k(�; b )k1 = jbj +
P n

i =1 j� i j;
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What about the case where linearity does not work?

� Many examples show that life is not always linear...kernels at the rescue.

� Let us take a further look at� = ( XX T ) � 1Xy .

� For any new point,� T x plays the same role asw T x in the SVM.

� We consider a new pointx 2 Rd with the constant1, i.e. x  [ 1
x ].

� [b; � T ]x = xT (XX T + �I d) � 1Xy .
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Kernel ridge regression

� A simple inversion trick states that(XX T + �I d) � 1Xy = X (�I n + X T X ) � 1y

� Hence[b; � T ]x = xT X (�I n + X T X ) � 1y =

2

4
xT x1
xT x2...
xT xd

3

5

T

(�I n + [ xT
i x j ]) � 1y!

� Bottom line: we have shown how to compute a regression tool which only
depends on dot-products.

� Dot-products can be replaced bykernels!

f (x) =

" k (x ;x1)
k (x ;x2)

...
k (x ;xd)

#T

(�I n +
�
k(x i ; x j )

�
) � 1y
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Kernel methods

� Many other standardlinear algorithms,

� Principal Component Analysis,
� Canonical Correlation Analysis,
� Fisher Discriminant analysis,
� etc.can be modi�ed toincorporate kernel similarities.

Algorithms based onkernels are known askernel methods.

VNU June 12-17 54



Kernel Methods

A reasonably large academic sub�eld

� Widespread popularity in machine learning now

� Gained momentum in the late 90's with the support vector machine,

� Rooted in much older maths.

� Kernel methods are a pluridisciplinary �eld, publicationsappearing in

� computer science (nips, journ. of machine learning, ICML..),
� statistics and functional analysis (annals of statistics..),
� optimization (Mathematical Programming..),
� Di�erent application sub�elds (Neural Computation..)
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Kernel Methods

� Standard text-books:

� Introduction [SS02]

� More about kernels [STC04]

� More learning theory [SC08]

� First chapters [STV04]
� \Mathematical" perspective [BTA03]. The real deal: [BCR84].

� Some short surveys,

� journal papers [HHS08], [MMR+01]
� a survey on my webpage (local copy, not arxiv): key to all citations!

� On the web:

� Courses by J.-P. Vert, Francis Bach, Kenji Fukumizu, St�ephane Canu.
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Some terminology

Etymology : from old englishcyrnel, diminutive of corn (seed)

the wordkernel appears in di�erent di�erent contexts...

� The linux kernel...

� Kernel of a linear operator ofX : ker(L ) = f x 2 X j L (x) = 0 g.

� Kernel of a matrix inRd� d, i.e. its nullspacef x 2 RdjAx = 0g.

� In set theory, for a functionf : X 7! Y , ker(f ) = f (x; x 0)j f (x) = f (x0)g.

� Kernel of an integral transformT, T f (u) =
Rt 2

t 1
k(t; u)f (t)dt

� Smoothing kernel, a functionk � 0; k(u) = k(� u);
R1

�1 k(u)du = 1 .

� K (t; x; y ) = 1
(4 �t )d=2e� kx � yk2

4t solves heat equationK (t; x; y ) = � x K (t; x; y )

sets, subspaces,one-variable,two- variables,three-variables function...
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Moral of the story

No need to look for a common or primitive meaning

� Kernel is just a word mathematicians fancy (unfortunately!)

� People enjoy it because of its vague \core" meaning.

� Don't feel you have missed something if you do not see the connection
between di�erentkernel objects in mathematics. There might be none...

� Will mention some links during the lecture between di�erentde�nitions.

VNU June 12-17 58



What is a kernel

In the context of this lecture...

� A kernelk is a function

k : X � X 7�! R
(x; y ) �! k(x ; y )

� which compares two objects of a spaceX , e.g....

� strings, texts and sequences,

� images, audio and video feeds,

� graphs, interaction networks and 3D structures

� whatever actually... time-series of graphs of images? graphs of texts?...
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Fundamental properties of a kernel

symmetric

k(x ; y ) = k(y ; x):

positive-(semi)de�nite
for any �nite family of pointsx1; � � � ; xn of X , the matrix

K =

2

6
6
6
6
6
6
4

k(x1; x1) k(x1; x2) � � � k(x1; x i ) � � � k(x1; xn )
k(x2; x1) k(x2; x2) � � � k(x2; x i ) � � � k(x2; xn )

... ... . . . ... ... ...
k(x i ; x1) k(x i ; x2) � � � k(x i ; x i ) � � � k(x2; xn )

... ... ... ... . . . ...
k(xn ; x1) k(xn ; x2) � � � k(xn ; x i ) � � � k(xn ; xn )

3

7
7
7
7
7
7
5

� 0

is positive semide�nite (has a nonnegative spectrum).

K is often called theGram matrix of f x1; � � � ; xn g usingk
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What can we do with a kernel?
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The setting

� Pretty simple setting: a set of objectsx1; � � � ; xn of X

� Sometimes additional information on these objects

� labelsy i 2 f� 1; 1g or f 1; � � � ; #( classes)g,
� scalar valuesy i 2 R,
� associated objecty i 2 Y

� A kernelk : X � X 7! R.
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A few intuitions on the possibilities of kernel methods

Important concepts and perspectives

� The functional perspective: representpoints as functions.

� The new oralternative dot-product perspective.

� Nonlinearity : linear combination of kernel evaluations.

� Summary of a sample through itskernel matrix .
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Represent any point in X as a function

For everyx, the map
x �! k(x ; �)

associates tox a function k(x; �) from X to R.

� Suppose we have a kernelk on bird images

� Suppose for instance

k ( ; ) = :32
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Represent any point in X as a function

� We examine one image in particular:

� With kernels, we get arepresentation of that bird as a real-valued function,
de�ned on the space of birds, represented here asR2 for simplicity.

schematic plot ofk ( ; � ) :
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Represent any point in X as a function

� If the bird example was confusing...

� k
�

[ x
y ] ;

h
x 0

y0

i�
=

�
[ x y ]

h
x 0

y0

i
+ :3

� 2

� From a point inR2 to a function de�ned overR2.

1 1.5 2 2.5 3
0.5

1

1.5

2

2.5

!

-5

0

5-6 -4 -2 0 2 4 6

0

100

200

300

400

500

x

y

((2 x+1.5 y) + .3)2

� We assume implicitly that thefunctional representation will be more useful
than the original representation .
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Dot-product perspective

� SupposeX = Rd.

� The simplest kernel:k(x ; y ) = xT y .

� For a data sampleX = f x1; x2; � � � ; xn g.

� In matrix form, X =

2

4
... ... � � � ...

x1 x2 � � � xn
... ... � � � ...

3

5 2 Rd� n .

� In standard linear algebra, the Gram matrix ofX is

K =
�
xT

i x j
�

1� i;j � n = X T X:
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Dot-product perspective

� Consider a di�erent kernelkG (x ; y ) = exp
�

� kx � yk2

� 2

�
,

K G =
�
kG (x i ; x j )

�
1� i;j � n :

� obviouslyxT
i x j 6= kG(x i ; x j ):

� is there a representation� i 2 R?? for each point such that� T
i � j = kG (x i ; x j )?

� Linear algebra to the rescue:K = P DP T , U = P
p

DP T , henceK = UT U,

providingU =

2

4
... ... � � � ...

� 1 � 2 � � � � n
... ... � � � ...

3

5 2 Rn � n .
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Dot-product perspective

� In summary, we have de�nedn vectors such that

�
kG (x i ; x j )

�
=

�
� T

i � j
�

� Great: for eachx i we have a vector representation� i .

� Problem:

� this representation depends explicitly on the sampleX .
� For a newxn +1 , di�cult to �nd � n +1 such that � T

n +1 � j = kG (xn +1 ; x j ).

� We will see that there exists a mapping � , such that

� � : X ! H whereH is a dot-product space,
� which gives a dot product representation fork,

kG (x ; y ) = h� (x); � (y ) i :

for all points (x ; y )...
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Decision functions as linear combination of kernel evaluat ions

� Linear decisions functions are a major tool in statistics, that is functions

f (x) = � T x + � 0:

� Implicitly, a point x is processed depending on its characteristicsx i ,

f (x) =
dX

i =1

� i x i + � 0:

the free parameters are scalars� 0; � 1; � � � ; � d .

� Kernel methods yield candidate decision functions

f (x) =
nX

j =1

� j k(x j ; x ) + � 0:

the free parameters are scalars� 0; � 1; � � � ; � n .
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Decision functions as linear combination of kernel
evaluations

� linear decision surface / linear expansion ofkernel surfaces (herekG (x i ; �))
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� Kernel methods are considerednon-linear tools.

� Yet not completely \nonlinear"! only one-layer of nonlinearity.

kernel methods use the data as a functional base to de�ne decision functions

VNU June 12-17 71



Decision functions as linear combination of kernel evaluat ions

with a kernel machine

f (x) =
P N

i =1 � i k (x i ; x )

kernel de�nition

weights� estimated

databasef x i ; i = 1 ; : : : ; N g

� f is any predictive function of interest of a new pointx .

� Weights� areoptimized with a kernel machine (e.g. support vector machine)

intuitively, kernel methods provide decisions based on how similar a
point x is to each instance of the training set
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The Gram matrix perspective

� Imagine a little task: you have read 100 novels so far.

� You would like to know whether you will enjoy reading anew novel.

� A few options:

� read the book...
� have friends read it for you, read reviews.
� try to guess, based on the novels you read, if you will like it
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The Gram matrix perspective

Two distinct approaches

� De�ne what features can characterize a book.

� Map each book in the library onto vectors

�! x =

2

6
6
4

x1

x2
...

xd

3

7
7
5

typically the x i 's can describe...
B # pages, language, year 1st published, country,
B coordinates of the main action, keyword counts,
B author's prizes, popularity, booksellers ranking

� Challenge: �nd a decision function using 100 ratings and features.

VNU June 12-17 74



The Gram matrix perspective

� De�ne what makestwo novels similar ,

� De�ne a kernelk which quanti�es novel similarities.
� Map the library onto a Gram matrix

�! K =

2

6
6
4

k(b1; b1) k(b1; b2) � � � k(b1; b100)
k(b2; b1) k(b2; b2) � � � k(b2; b100)

... ... . . . ...
k(bn ; b1) k(bn ; b2) � � � k(b100; b100)

3

7
7
5

� Challenge: �nd a decision function that takes this100� 100matrix as an input.
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The Gram matrix perspective

Given a new novel,

� with the features approach, the prediction can be rephrased aswhat are the
features of this new book ? what features have I found in the past that were
good indicators of my taste?

� with the kernel approach, the prediction is rephrased aswhich novels this
book is similar or dissimilar to? what pool of books did I �nd the most
in
uentials to de�ne my tastes accurately?

kernel methodsonly use kernel similarities, do not consider features.

Features can help de�ne similarities, butnever considered elsewhere.
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The Gram matrix perspective

In summary

� A feature based analysis of a data-driven problem:

objectso1; � � � ; on �! feature vectorsX =

2

4
... ... � � � ...

x1 x2 � � � xn
... ... � � � ...

3

5 2 Rd � n

� A similarity based analysis of a data driven problem:

objectso1; � � � ; on ! GramK =

2

6
6
4

k(o1; o1) k(o1; o2) � � � k(o1; on )
k(o2; o1) k(o2; o2) � � � k(o2; on )

... ... . . . ...
k(on ; o1) k(on ; o2) � � � k(on ; on )

3

7
7
5 2 Rn � n

� Some parallels (can de�neK = X T X or X =
p

K or Cholesky) but...

Algorithms use either featuresor (kernel) similarities.
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The Gram matrix perspective

in kernel methods, clear separation between the kernel...

dataset x3
x4

x5
x2

x1

convex optimization

K 5� 5, kernel matrix

k

�

and Convex optimization (thanks to psdness ofK , more later) to output the� 's.
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Mathematical Considerations

di�erent de�nitions and properties of the same mathematical object
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An intuitive perspective: Feature maps

Theorem 1. A function k on X � X is a positive de�nite kernel if and only if
there exists a setT and a mapping� from X to l2(T), the set of real
sequencesf ut ; t 2 Tg such that

P
t 2 T jut j2 < 1 , where

8(x; y ) 2 X � X ; k(x ; y ) =
X

t 2 T

� (x )t � (y )t = h� (x); � (y )i l 2(X )

� A very popular perspective in the machine learning world.

� Equivalent to previous de�nitions, less stressed in the RHKS literature.

x �! � (x) =

2

6
6
6
6
4

...

...
� (x)t

...

...

3

7
7
7
7
5

t 2 T

where the� t are a set of { possibly in�nite but countable { features.
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kernels ! Gram matrices

� If X = f x i gi 2 I in X ,
K X = [ k(x i ; x j )] i;j 2 I � 0:

� If one appliesany transformation ofK X which keeps eigenvalues nonnegative,

r : Sn 7�! Sn

K �! r (K );

r (K ) is a valid positive de�nite matrix and hence a kernel onX .

� examples:K + t(t > 0); K 2; eK ; etc:

� in fact, if K = P� PT , any transformation that preserves the spectrum's
non-negativity would be ok.

� Yet... this kernel is only valid onX , the sample, not the whole spaceX .

Meaning somehow... Gram matrices9 kernels
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positive de�nite kernels and distances

� Kernels are often called similarities.

� the higher k(x ; y ), the more similarx and y .

� With distances, thelower d(x; y ), the closerx and y .

� Many distances exist in the literature. Can they be used to de�ne kernels?

what is the link between kernels and distances?

high similarity ?= small distance

� At least true for the Gaussian kernelk(x ; y ) = e�k x � yk2=2� 2
...

� Important theorems taken from [BCR84].
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Distances

De�nition 1 (Distances, or metrics). A nonnegative-valued function d on
X � X is a distance if it satis�es, 8x; y ; z 2 X :

(i) d(x ; y ) � 0, and d(x; y ) = 0 if and only if x = y (non-degeneracy)

(ii) d(x ; y ) = d(y ; x) (symmetry),

(iii) d(x ; z) � d(x ; y ) + d(y ; z) (triangle inequality)

� Very simple example: ifX is a Hilbert space,kx � yk is a distance. It is
usually called a... Hilbertian distance.

� By extension, any distanced(x; y ) which can be written ask� (x) � � (y )k
where� mapsX to any Hilbert space is called aHilbertian metric .

� Useful. To build Gaussian kernel, Laplace kernelsk(x ; y ) = e� t kx � yk ...

� Yet does not su�ce:
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the missing link: negative de�nite kernels

De�nition 2 (Negative De�nite Kernels). A symmetric function  : X � X ! R
is a negative de�nite (n.d.) kernel on X if

nX

i;j =1

ci cj  (x i ; x j ) � 0 (1)

holds for any n 2 N; x1; : : : ; xn 2 X and c1 : : : ; cn 2 R such that
P n

i =1 ci = 0 .

� Example (x ; y ) = kx � yk2.

� prove by decomposing intokx i k2 + kx j k2 � 2hx i ; x j i

� N (X ) is also a closed convex cone.

important example:k is p.d. ) � k is n.d.
Converse completely false.
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negative de�nite kernels & positive de�nite kernels

A �rst link between these two kernels:

Proposition 2. Let x0 2 X and let  : X � X ! R be a symmetric kernel. Let

' (x ; y ) def=  (x ; x0) +  (y ; x0) �  (x ; y ) �  (x0; x0):

Then k is positive de�nite ,  is negative de�nite.

� Example:kx � x0k2 + ky � x0k2 � k x � yk2 is a p.d. kernel.
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Proof.

� ) For x1; � � � ; xn , and c1; � � � ; cn s.t.
P n

i =1 ci = 0,

nX

i;j =1

ci cj ' (x i ; x j ) = �
nX

i;j =1

ci cj  (x i ; x j ) � 0:

� ( For x1; � � � ; xn and c1; � � � ; cn , let c0 = �
P n

i =1 . Set x0 = x0. Then

0 �
nX

i;j =0

ci cj  (x i ; x j )

=
nX

i;j =1

ci cj  (x i ; x j ) +
nX

i =1

ci c0 (x i ; x0) +
nX

j =1

c0cj  (x0; x j ) + c2
0 (x0; x0):

=
nX

i;j =1

[ (x i ; x0) +  (x j ; x0) �  (x i ; y j ) �  (x0; x0)] =
nX

i;j =1

ci cj ' (x i ; x j ):
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negative de�nite kernels & positive de�nite kernels

Proposition 3. For a p.d. kernel k � 0 on X � X , the following conditions are
equivalent

(i) � logk 2 N (X ),

(ii) kt is positive de�nite for all t > 0.

If k satis�es either, k is said to bein�nitely divisible ,

Proof.

� � logk = lim n !1 n(1 � k
1
n ) which is the limit of a series of n.d. kernels if(ii )

is true, hence(ii ) ) (i ).

� conversely, if� logk 2 N (X ) we use Proposition 2. Writing = � logk and
choosingx0 2 X we have

kt = e� t (x ;y ) = et (x 0;x 0)et' (x ;y) e� t (x ;x 0)e� t (y ;x 0) 2 P (X )
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negative de�nite kernels: (Hilbertian distance )2 + ...
Proposition 4. Let  : X � X be a n.d. kernel. Then there is a Hilbert space
H and a mapping� from X to H such that

 (x ; y ) = k� (x) � � (y )k2 + f (x) + f (y ); (2)

where f : X ! R. If  (x; x ) = 0 for all x 2 X then f can be chosen as zero. If
the set f (x ; y )j  (x ; y ) = 0 g is exactly f (x ; x); x 2 X g then

p
 is a Hilbertian

distance.

Proof. Fix x0 and de�ne

' (x ; y ) def=
1

2
[ (x ; x0) +  (y ; x0) �  (x ; y ) �  (x0; x0)] :

By Proposition 2' is p.d. hence there is a RKHS and mapping� such that
' (x ; y ) = h� (x); � (y ) i : Hence

k� (x) � � (y )k2 = ' (x ; x) + ' (y ; y ) � 2' (x ; y )

=  (x ; y ) �
 (x ; x) +  (y ; y )

2
:
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distances & negative de�nite kernels

� whenever a n.d. kernel 

� vanishes on thediagonal, i.e. on f (x; x ); x 2 X g,
� is 0 only on the diagonal, to ensure non-degeneracy,

!
p

 is a Hilbertian distance forX .

� More generally , for a n.d. kernel ,

r

 (x ; y ) �
 (x ; x)

2
�

 (y ; y )
2

is a (pseudo)metric for X :

� On the contrary, to each distance does not always corresponda n.d. kernel
(Monge-Kantorovich distance, edit-distanceetc..)
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In summary...

diagonal

Hilbertian
   metrics

infinitely 
divisible kernels

vanishing

d =
p

 

D (X )
N (X ) = d2

P (X )

P 1 (X )

k = exp( �  )

 = � log k

d(x; y ) =
q

 (x; y ) �  (x;x )+  (y;y )
2

� Set of distances onX is D(X ), Negative de�nite kernelsN (X ), positive and
in�nitely divisible positive kernelsP(X ) and P1 (X ) respectively.
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Some �nal remarks on N (X ) and P(X )

� N (X ) is a cone. Additionally,

� if  2 N (X ); 8c 2 R;  + c 2 N (X ).
� if  (x; x ) � 0 for all x 2 X ,  � 2 N (X ) for 0 < � < 1 since

 � =
�

�(1 � � )

Z 1

0
t � � � 1(1 � e� t )dt

and log(1 +  ) 2 N (X ) since

log(1 +  ) =
Z 1

0
(1 � e� t )

e� t

t
dt:

� if  > 0, then log( ) 2 N (X ) since

log( ) = lim
c!1

log
�

 +
1
c

�
= lim

c!1
log (1 + c ) � logc
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Some �nal remarks on D(X ); N (X ); P(X )

� P(X ) is a cone. Additionally,

� The pointwise productk1k2 of two p.d. kernels if a p.d. kernel
� kn 2 P (X ) for n 2 N. (k + c)n too...as well asexp(k) 2 P (X ):

B exp(k) =
P 1

i =0
k i

i ! , a limit of p.d. kernels.
B exp(k) = exp( � (� k)) where� k 2 N (X ).

� The sum of two in�nitely divisible kernels is not necessarily in�nitely divisible.

� � logk1 and � logk2 might be inN (X ), but � log(k1 + k2)?...
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De�ning kernels
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Intuitively an important issue...

Remember that kernel methods drop all previous information

dataset x3
x4

x5
x2

x1

convex optimization

K 5� 5, kernel matrix

k

�

to proceed exclusively withK .

if the kernelK is poorly informative, the optimization cannot be very useful...
it is thereforecrucial that the kernel quanti�esnoteworthy similarities .
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Kernels on vectors

(relatively) easy case:we are only given feature vectors,
with no accessto the original data.

� Reminder (copy paste of previous slide!): for a family of kernelsk1; � � � ; kn ; � � �

� The sum
P n

i =1 � i ki is p.d., given� 1; : : : ; � n � 0
� The productka1

1 � � � kan
n is p.d., givena1; : : : ; an 2 N

� limn !1 kn is p.d. (if the limit exists!).

� Using these properties we can prove the p.d. of

� the polynomial kernelkp(x; y) = ( hx; y i + b)d; b > 0; d 2 N,

� the Gaussian kernelk� (x; y) = e� kx � yk2

2� 2 which can be rewritten as

k� (x; y) =
�
e� kxk2

2� 2 e� kyk2

2� 2

�
�

"
1X

i =0

hx; y i i

i !

#
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Kernels on vectors

� the Laplace kernels, using some n.d. kernel weaponry,

k� (x; y) = e� � kx � yka
; 0 < �; 0 < a � 2

� the all-subset Gaussian kernel inRd,

k(x; y) =
dY

i =1

�
1 + ae� b(x i � y i )

2
�

=
X

I �f 1;��� ;dg

a#( I )e� bkx I � y I k2
:

� A variation on the Gaussian kernel: Mahalanobis kernel,

k� (x; y) = e� (x � y )T � � 1(x � y ) ;

idea: correct for discrepancies between the magnitudes andcorrelations of
di�erent variables.

� Usually� is the empirical covariance matrix of a sample of points.
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Kernels on vectors

� These kernels can be seen asmeta-kernels which can use any feature
representation.

� Example: Gaussian kernel of Gaussian kernel feature maps,

kG2(x ; y ) = kG

�
e� kx ��k 2

2� 2 ; e� ky ��k 2

2� 2

�
= e� 2� e

� kx � yk2

2� 2

2� 2 :

� Not sure this is very useful though!

� Indeed, the real challenge is not to de�ne funky kernels,

the challenge is to tune the parametersb; d; �; � .
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Kernels on structured objects

� Structured objects?

� texts, webpages, documents
� sounds, speech, music,
� images, video segments, movies,
� 3d structures, sequences, trees, graphs

� Structured objects means

� objects witha tricky structure ,
� which cannot be simply embedded in a vector space of small dimensionality,
� without obvious algebraic properties,

structured object = that which cannot be represented in a (small) Euclidian space
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Vectors in Rn
+ and Histograms

� A powerful and popular feature representation for structured objects:
histograms of smaller building-blocks of the object :

� histograms are simple instances ofprobability measures,

� nonnegative coordinates, sum up to 1.
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Standard metrics for Histograms

Information geometry , introduced yesterday, studies distances between densities.

� Reference : [AN01]

� An abridged bestiary ofnegative de�nite distances on the probability
simplex:

 JD (�; � 0) = h
�

� + � 0

2

�
�

h(� ) + h(� 0)
2

;

 � 2(�; � 0) =
X

i

(� i � � 0
i )

2

� i + � 0
i

;  T V (�; � 0) =
X

i

j� i � � 0
i j;

 H 2(�; � 0) =
X

i

j
p

� i �
p

� 0
i j

2;  H 1(�; � 0) =
X

i

j
p

� i �
p

� 0
i j:

� Recover kernels through

k(�; � 0) = e� t ; t > 0
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Information Di�usion Kernel [LL05,ZLC05]

� Solve the heat equation on the multinomial manifold, using the Fisher metric

� Approximate the solution with

k� d(�; � 0) = e� 1
t arccos2(

p
� �

p
� 0) ;

� arccos2 is the squared geodesic distance between� and � 0 as elements from
the unit sphere (� i !

p
� i ).

� In [ZLC05]: the use of

k� d(�; � 0) = e� 1
t arccos(

p
� �

p
� 0) ;

is advocated.

� the geodesic distance is a n.d. kernel on thewhole sphere(arccos2 is not).
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Transportation Metrics for Histograms

Beyond information geometry, the family oftransportation distances .

� Supposer = ( r 1; � � � ; r d) and c = ( c1; � � � ; cd) are two histograms inRn
+ .

� De�ne the set of transportations

U(r ; c) = f F 2 Rd� d
+ j F 1 = r ; F T 1 = cg:

� Transportation distances betweenr and c:

dcost(rc ) = min
F 2 U ( r ;c)

cost(F ):

Monge-Kantorovich : cost(F ) = hF; D i whereD is a n.d. matrix.

� dcost is not n.d. in the general case.

� Alternatives:
kcost(rc ) =

Z

F 2 U ( r ;c)
e� cost(F ) :

� works when cost= 0 : the volume ofU(r ; c) is a p.d. kernel ofr and c. [Cut07]
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Statistical Modeling and Kernels

Histograms cannot always summarize e�ciently the structures ofX

� Statistical models of complex objects provide richer explanations:

� Hidden Markov Models for sequences and time-series,
� VAR, VARMA, ARIMA etc. models for time-series,
� Branching processes for trees and graphs
� Random Markov Fields for imagesetc.

� f x1; � � � ; xn g are interpreted as i.i.d realizations of one or many densities onX .

� These densities belong to a modelf p� ; � 2 � � Rdg

Can we usegenerative (statistical) models
in

discriminative (kernel and metric based)methods?
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Fisher Kernel

� The Fisher kernel [JH99] between two elementsx; y of X is

k�̂ (x ; y ) =
�

@ln p� (x)
@�

�
�
�̂

� T

J � 1
�̂

�
@ln p� (y )

@�

�
�
�̂

�
;

� �̂ has been selected using sample data (e.g.MLE),
� J � 1

�̂
is the Fisher information matrix computed in̂� .

� The statistical modelf p� ; � 2 � g provides:

� �nite dimensionalfeaturesthrough thescore vectors,
� A Mahalanobis metric associated with these vectors throughJ �̂ .

� Alternative formulation:

k�̂ (x; y) = e� 1
� 2(r �̂ ln p� (x ) �r �̂ ln p� (y ))T

J � 1
�̂

(r �̂ ln p� (x ) �r �̂ ln p� (y )):

with the meta-kernel idea.
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Fisher Kernel Extended [TKR+02,SG02]

� Minor extensions, useful for binary classi�cation:

� Estimate �̂ 1 and �̂ 2 for each class respectively,

� consider the score vector of the likelihood ratio

� �̂ 1; �̂ 2
: x 7!

0

B
@

@ln
p� 1(x )
p� 2(x )

@#

�
�
�

#̂ =( �̂ 1; �̂ 2)

1

C
A ;

where# = ( � 1; � 2) is in � 2.

� Use this logratio's score vector to propose instead the kernel

(x; y) 7! � �̂ 1; �̂ 2
(x)T � �̂ 1; �̂ 2

(y ):
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Mutual Information Kernel: densities as feature extractor s

� More bayesian 
avor ! drops maximum-likelihood estimation of� . [See02]

� Instead, useprior knowledge on f p� ; � 2 � g through adensity ! on �

� Mutual information kernelk! :

k! (x ; y ) =
Z

�
p� (x)p� (y ) ! (d� ):

� The feature maps0 � p� (x) � 1 and 0 � p� (y ) � 1.

k! is big whenever manycommon densitiesp�

score high probabilities forboth x and y

� Explicit computations sometimes possible,namely conjugate priors .

� Example: context-tree kernel for strings.
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Mutual Information Kernel & Fisher Kernels

The Fisher kernel is a maximuma posteriori approximation of the MI kernel.

� What? How? by setting the prior! to the multivariate Gaussian density

N (�̂; J � 1
�̂

);

an approximation known as Laplace's method,

� Writing

�( x) = r �̂ ln p� (x) =
@ln p� (x)

@�

�
�
�̂

we get
logp� (x) � logp�̂ (x) + �( x)( � � �̂ ):
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Mutual Information Kernel & Fisher Kernels

� UsingN (�̂; J � 1
�̂

) for ! yields

k(x; y) =
Z

�
p� (x)p� (y ) ! (d� );

� C
Z

�
elog p �̂ (x )+�( x )T ( � � �̂ )elog p �̂ (y )+�( y )T ( � � �̂ ) e� ( � � �̂ )T J �̂ ( � � �̂ )d�

= Cp�̂ (x)p�̂ (y)
Z

�
e(�( x )+�( y )) T ( � � �̂ )+( � � �̂ )T J �̂ ( � � �̂ )d�

= C0p�̂ (x)p�̂ (y)e
1
2 (�( x )+�( y )) T J � 1

�̂
(�( x )+�( y ))

(1)

� the kernel
~k(x; y) =

k(x; y)
p

k(x; x )k(y; y)
is equal to the Fisher kernel in exponential form.
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Marginalized kernels - Graphs and Sequences

� Similar ideas: leveragelatent variable models. [TKA02,KTI03]

� For location or time-based data,

� the probability of emission of a tokenx i is conditioned by
� an unobserved latent variablesi 2 S, whereS is a �nite space of possible

states.

� for observed sequencesx = ( x1; � � � ; xn ); y = ( y1; � � � ; yn ), sum over all
possible state sequences theweighted product of these probabilities :

k(x; y) =
X

s2S

X

s02S

p(sjx ) p(s0jy ) � (( x; s ) ; (y; s 0))

� closed form computations exist for graphs & sequences.
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Kernels on MLE parameters

� Use model directly to extract a single representation from observed points:

x 7! �̂ x ; y 7! �̂ y ;

through MLE for instance.

� comparex and y through a kernelk� on � ,

k(x; y) = k� (�̂ x ; �̂ y ):

� Bhattacharrya a�nities:

k� (x ; y ) =
Z

X
p�̂ x

(z) � p�̂ y
(z) � dz

for � > 0.
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