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Regression, Classi cation and other Supervised Tasks

Two associated random variables

A random variablex, taking values inX,
A random variabley, taking values inY.

Two samples of (x;y) I.1.d. distributed from their joint law

f (X1;¥1);  (Xn;Yn)g, n couples ofX Y .

Challenge:predict y when given only.

In practice, nd a functionX 'Y for whichf (x) is not too di erent fromy
on average.
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Binary Classi cation

Y=1f 1 1q.

f needs to be a functions that, givex predicts a label,
f . X7'f 1,19

of course, many possible choices fds shape.
We review heréinear hyperplanes irX = RY rst.

We represent it inR? for simplicity.

Next slides will cover an important algorithm, theVM algorithm

this algorithm can be naturally expressed in termskefnels we review later
other algorithms for which this is also the case.

thanks to Jean-Philippe Vert for many of the following guseand slides.
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Linear classi er, some degrees of freedom
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Which one iIs better?
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A criterion to select a linear classi er: the margin
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Largest Margin Linear Classi er
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Support Vectors with Large Margin
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In equations

The training set is a nite set of n data/class pairs:

wherex; 2 R andy; 2f 1;1g.

We assume (for the moment) that the data atenearly separable, i.e., that
there exists(w;b) 2 R R such that:

( |
w'xi+ b>0 ify; =1;

w'xi+ b<0 ify; = 1:
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How to nd the largest separating hyperplane?

For the linear classi eff (x) = w'x + b consider theinterstice de ned by the
hyperplanes

f(x)=wix+ b=+1

f(x)=w'x+b= 1

A
X+b=0
WX\\A
\

O
O

O w.x
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The margin Is 29jw|j

Indeed, the pointsx; and x, satisfy:

By subtracting we getw ' (x>

(

wix;+ b=0;
wWix,+ b=1:

X1) =1, and therefore:

2

=2jjX2  Xi]] = —=:

where is the margin.
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All training points should be on the appropriate side

For positive examplesy( = 1) this means:

w'xi+b 1

For negative examplesy/(= 1) this means:

w'xi + b 1

In both cases:
8i=1:::::n; yi wixj+b 1
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Finding the optimal hyperplane

Find (w; b) which minimize:

jiwii®

under the constraints:
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This is a classical quadratic program @f*1
linear constraints - quadratic objective
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Lagrangian

In order to minimize: 1
—fw
2JJ ]
under the constraints:

8i=1:::::n; Vi Wixij+b 1 O

introduceone dual variable ; for each constraint,

namely, foreach training point. The Lagrangian is, for 0,

X

1. .
L(w;b; )= EJJWJJZ Cyi Wwixj+b 1

=1
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The Lagrange dual function

( )

a( )= WZiQ‘I'bZR %kaz Vi wixi+b 1

Is only de ned when

X
W = iViXi; ( derivating w.r.tw) ()
i=1

0= yi: (derivating w.rth) ()
=1

substituting( ) In g, and using( ) as a constraint, get the dual functiog( ).

To solve the dual problemmaximize g w.r.t.

Strong duality holds. KKT gives usi(y; w'x;+ b 1)=0, either ; =0
ory; w'xj+b =1.

: 6 0 only for points on the support hyperplandgx;y)jyi(w'x; + b)=1g.
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Dual optimum

The dual problem is thus

. P P
maximize g( )= ., | P% e 0 YIYiX( X
such that 0, ., iyi=0:

This is a quadratic program oiRR", with box constraints
can be found e ciently using dedicated optimization softnes

VNU June 12-17
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Recovering the optimal hyperplane

Once is found, we recovefw' ;b ) corresponding to the optimal

hyperplane.

P
wT is given byw™ =~ Uy ix/;

b is given by the conditions on the support vectors> 0, y;(w'x; + b =1,

1 . T T
= — ) + ,
b > yi:r1n;|r1i>0(w Xi) yi:mfixpo(w Xi)

the decision function Is therefore:

f xX)=w'x+Db

X
= Y iX{x+Db:
=1

Here thedual solution gives us directly therimal solution.
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Interpretation: support vectors
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What happens when the data is not linearly separable?
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What happens when the data is not linearly separable?
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Soft-margin SVM

Find a trade-o betweenlarge margin and few errors.

Mathematically:

min . + C errorgf)

f margin(f )

C Is a parameter
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Soft-margin SVM formulation

The margin of a labeled point(x;y) Is
marginx;y)=y w'x+ b

The error Is

O if margin(x;y) > 1,
1 marginx;y) otherwise.

The soft margin SVM solves:

X

mitr)lfkwk2+ C maxfO:l y; w'xj+bg
W =1

c(u;y) =maxf0;1 vyugis known as theninge loss.

c(w'x; + b;y;) associates a mistake cost to the decisianb for examplex;.
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Dual formulation of soft-margin SVM

The soft margin SVM program

X

mipfkwk2+ C maxfO;l y; wixj+bg
W, )
=1

can be rewritten as

« e 2 P n
minimize  kwkc+ C ., |

=1
suchthat y; wixi+b 1

In that case the dual function
X 1 X T
g( )= 5 i YiYi X X

i=1 I =1

which is nite under the constraints:

(
B i C:; fori=1:;::::n
n .

i=1 iYi~—
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Interpretation: bounded and unbounded support vectors
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Sometimes linear classi ers are not interesting
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Solution: non-linear mapping to a feature space

x1 %12
®
o 9,0
Qoo ©
° OOC; N
.'. ® O 00 x22

Let (x)=(x%;x3)° w=(1;1)andb=1. Then the decision function is:

f(x)= xi+ x5 R%*=hw; (X)i+ b;

VNU June 12-17
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Kernel trick for SVM's

use a mapping from X to a feature space,

which corresponds to th&ernel k:

8x;x%2X:; k(x:x9=h (x); (xYi

. X1 XJZ_
Example: if (x) = « = 2 , then
2 2

KO x9) = h (x); (x)i = (x0)?(xD)? + (x2)(x2)*:

VNU June 12-17
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Training a SVM In the feature space

Replace eachx'x%in the SVM algorithm by h (x); (x9i = k(x;x9

The dual problem is to maximize

X 1 X
a( )= 5 i YiYik(Xi;x);
i=1 ij =1
under the constraints:
( |
B i C;, fori=1;:::;n

The decision function becomes:

f(x)= hw; (X)i+b

X
= Vi ik(xi;x) +b:
=1

VNU June 12-17
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The kernel trick

The explicit computation of  (x) is not necessary. The kernel k(x;x9 is

enough.

The SVM optimization for worksimplicitly in the feature space.

The SVM is a kernel algorithm: only need to inplt andy:
maximize g( )= 1 £ T(yTKy)

such that 9 i C; fori=1:::::n
=y iYi =0:

P
in the end the solutiorf (x) = [, yi ik(xj;x)+ b.

VNU June 12-17
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Kernel example: polynomial kernel

For x = (X1:X2)” 2 R?, let (x) :(x%;pixlxg;xg) 2 R3:

K (x;x9 = xIxP + 2x1x2x9x0 + x5x¥
= fx1x) + Xox50°

= fx"x%?:
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Some demonstrations using Matlab

playing with a few kernels and a few points
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SVM's: a particular case of a more general
framework, penalized estimation

VNU June 12-17
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Empirical Risk Minimization

Starting with f (x1;y1);  ;(Xn;Yn)g, n couples ofX Y
A class of functiong-

A cost functionc: Y Y , ¢ 0, which penalizes discrepancies (hinge, least
sguaresetc.)

nd a function which minimizes

X
f*=argmin = c(f (xi);Vi)
f2r N,
and use thi as a decision function.
As usual in minimizations, we like:

Convex problems, unique minimizers
Stable solutions numerically.
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Linear least squares

WhenX = RY, Y = R,
F=1fx7' Tx+ b; 2R%b2 Rg;c(yi;y2) = ky:1 Vyok?
The problem is known aszgression with the least squares criterion.

In this case, the minimizer

X ) N R ,
argmin—  kf (x;) yikc=argmin — k 'Xx;j+ Db vyjk
f2F n i=1 2Rd;b2Rn i=1

IS unique assuming n > d and no degeneracy.

Why?
1% o_ L 1 b 2
R:(b; )! - K "X;+ Db yik:ﬁkx yk
2 = 3
1 1 1 2 3
H H H yl
is convex, wher& = §x. ' ' é 2 RI*1 N gndy =4 : 52 R".
1

X2 Xn y
. . n

VNU June 12-17
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Linear least squares
Notice that

R(b; )= b Txx T b 2yTXT b 4 kyk?

S|

Let us take the gradient of that function

nfrR=2XX"T P 2Xy

Hence this gradient is zero for® = (XX T) Xy
XX T2 S". This works ifXX T 2 R%*1 isinvertible, thatis XX T 2 S", .

Remark:

2 3
n NX; NXz NXq
nX]_ T
- _n n
X -gf‘?z XX T %‘ nooXXT
NXg

whereX is simply thed n sample matrix without the constant 1.

VNU June 12-17 48



Example in R®

Sample of carsx desribes weight and horsepower of a car.

y is the miles-per-gallon : high is eco-friendly, low is bad.

45—
404
35
304

254

MPG

204
154

104

5l 300
1000
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Linear least-squares is not the ideal tool though...

What happens when  n? (XX ") is no longer invertible ...

high-dimensional data in genomics,
Images analysise(glots of features)

What happens wheifXX T) is badly conditioned (-2 ((f; 1)) 0)?

Very bad numerical stability of the solution...

Whend n, we might want to dovariable selection,

i.e.pick a subsetd® of the d variables which is relevant to predigt
l.e.favor vectors such thatk kg =card ; 6 0 is small.
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Penalized Least-Squares

For all these problems, there is an appropriate penalizatio

X

(" B) = argmin LA Txi+b yik®+ k(:;b)k

. n
2RIb2R M g

we recovelleast-square regressionwhen =0;

ridge regressionwhen > 0andk(;b)k = k(;b)ks =
r, %8 7
PE XX T Xy
00 01

P
the lassowhen > 0andk( :b)k= k(;b)ks = jo +

VNU June 12-17
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What about the case where linearity does not work?

Many examples show that life is not always lineakernels at the rescue.

Let us take a further look at = (XX T) IXy.
For any new point, Tx plays the same role ag " x in the SVM.
We consider a new point 2 RY with the constantl, i.e. x  [1].

b; TIx = xT(XX T+ | 4) Xy.
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Kernel ridge regression

A simple inversion trick states thatXX T + | §) Xy = X (I ,+ XTX) 1y
2 3;

XTX1

Hencelb; TIx = XX (1 4+ XTX) y=4X25 (1 +[xTx]) ly!

XTXd

Bottom line: we have shown how to compute a regression tooickionly
depends on dot-products.

Dot-products can be replaced lyernels!

" kexy) T

fx)= U+ k(xirxg) ) Yy
K(x;Xq)
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Kernel methods

Many other standardlinear algorithms,

Principal Component Analysis,

Canonical Correlation Analysis,

Fisher Discriminant analysis,

etc.can be modi ed toincorporate kernel similarities.

VNU June 12-17

Algorithms based orkernels are known askernel methods.
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Kernel Methods

A reasonably large academic sub eld

Widespread popularity in machine learning now

Kernel Methods
for Remote Sensing
Data Analysis

Gained momentum in the late 90's with the support vector mamh
Rooted in much older maths.
Kernel methods are a pluridisciplinary eld, publicatioappearing in

computer sciencen(ips, journ. of machine learning, ICML,.
statistics and functional analysisaqnals of statistics),
optimization (Mathematical Programming),

Di erent application sub elds (Neural Computation.)
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Kernel Methods

Standard text-books:

Introduction [SS02]. -

More about kernels [STCOZ;Z’”:‘»
=

More learning theory [SCOE .

First chapters [STV04 s
\Mathematical" perspective [BTAO3]. The real deal: [BCRB4

Some short surveys,

journal papers [HHSO08], [MMR+01]
a survey on my webpage (local copy, not arxiv): key to all cgas!

On the web:
Courses by J.-P. Vert, Francis Bach, Kenji Fukumizu, Stepte Canu.

VNU June 12-17
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Some terminology

Etymology : from old englishcyrnel diminutive of corn (seed)

the word kernel appears in di erent di erent contexts...

The linux kernel...

Kernel of a linear operator oK: ker(L) = fx 2 XjL(x) =0g.

Kernel of a matrix inR? 9, i.e. its nullspacef x 2 RYjAx = 0g.

In set theory, for a functiorf : X 7Y, ker(f) = f(x;x9jf (x) = f (xYg.
Kernel of an integral transfornT, Tf (u) = thlz K(t;u)f (t)dt

R
Smoothing kernel, a functiokk  O; k(u) = k( u); i k(udu=1.
X 2
K(t;x;y)= We “2 solves heat equatio (; x;y) = K (X;y)

sets, subspacesgne-variable,two- variables,three-variables function...
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Moral of the story

No need to look for a common or primitive meaning

Kernel is just a word mathematicians fancy (unfortunately!)

People enjoy it because of its vague \core" meaning.

Don't feel you have missed something if you do not see the eation
between di erentkernel objects in mathematics. There might be none...

Will mention some links during the lecture between di eredé nitions.
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What 1s a kernel

In the context of this lecture...

A kernelk is a function

k: X X 7! R
(x;y) ! K(X;Y)

which compares two objects of a spaig e.g....

strings, texts and sequences,
Images, audio and video feeds, g} @

graphs, interaction networks and 3D structures

whatever actually... time-series of graphs of images? gspf texts?...

VNU June 12-17
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Fundamental properties of a kernel

symmetric

K(X;y) = k(y;X):

positive-(semi)de nite

for any nite family of pointsxq; ;x, of X, the matrix
2 3
k(x1;X1)  K(X1;X2) K(X1; Xi) K(X1;Xn)
K(X2;X1) Kk(X2;X2) K(X2; Xi) K(X2;Xn)
K = 5. s. 5. : 5. 0
k(xi;Xx1)  Kk(Xi;X2) K(Xi;Xi) K(X2;Xn)
K(Xn;X1) Kk(Xn;X») K(Xn;Xi) K(Xn;Xn)

IS positive semide nite (has a nonnegative spectrum).

K is often called theGram matrix of fxq; ; Xng usingk
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The setting

Pretty simple setting: a set of objects;; ;X of X
Sometimes additional information on these objects

labelsy; 2f 1;1gorfl;, ;#( classeqn,
scalar valuey; 2 R,
associated objecy; 2 Y

A kernelk : X X 7! R.

VNU June 12-17
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A few intuitions on the possibilities of kernel methods

Important concepts and perspectives

The functional perspective: represepbints as functions.
The new oralternative dot-product perspective.
Nonlinearity : linear combination of kernel evaluations.

Summary of a sample through itsernel matrix .

VNU June 12-17
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Represent any point in X as a function

For everyx, the map
x ! Kk(x;)
associates tox a functionk(x; ) from X to R.

Suppose we have a kernelon bird images

Suppose for instance

VNU June 12-17
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Represent any point in X as a function

We examine one image in particular:

With kernels, we get aepresentation of that bird as a real-valued function,
de ned on the space of birds, represented hereRgsfor simplicity.

schematic plot ofk ( ;)
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Represent any point in X as a function

If the bird example was confusing...
h i h i 5
kK 315 %o = [xv] %o +13

From a point inR? to a function de ned overR?.

2,51

(@x+L5y) + .3

1.5t [ ) |

0.5
1

We assume implicitly that théunctional representation will be more useful
than the original representation .
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Dot-product perspective

SupposeX = R¢.
The simplest kernelk(x;y) = x'y.

For a data sampleX = fXq;X»; ' Xng.
2 3

In matrix form, X = 4x; X5 X, 2 2 R4 N,

In standard linear algebra, the Gram matrix f is

n

K= %X, ,=X'X

VNU June 12-17
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Dot-product perspective

Consider a di erent kernekg (X;y) = exp kx—éﬁ :

KG - kG(Xi;Xj) 1 ] n:

obviouslyx{ x; 6 kg (Xi;X;j):
is there a representation; 2 R?? for each point such that" j = kg(xi;x;)?
P

Linear algebrasto the rescue&k 3 PDPT, U= P DPT, henceK = UTU,

providingU = 4 | 2 2RY N
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Dot-product perspective

In summary, we have de ned vectors such that

ka(xi;xj) =
Great: for eachx; we have a vector representation.

Problem:

this representation depends explicitly on the samjle
For a newxp.1, dicultto nd 41 suchthat [, j = ke(Xn+1;Xj).

We will see that there exists a mapping , such that

: X I'H whereH is a dot-product space,
which gives a dot product representation fkr

Ke(X;y) = h (x); (y)I:

for all points (x;y)...

VNU June 12-17
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Decision functions as linear combination of kernel evaluat ions

Linear decisions functions are a major tool in statisticat is functions

f(x)= "x+ o

Implicitly, a pointx is processed depending on its characterisk¢s

xd
f(x)= iXi + o
=1

the free parameters are scalarg; 1; g,

Kernel methods yield candidate decision functions
X

f(x)= ik(Xj;x)+ o
j=1

the free parameters are scalars; 1; .
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Decision functions as linear combination of kernel evaluat ions

databasef x;:1 =1 :::::N

N\

ORI ik(x.,x>

kernel de nition

weights estimated
with a kernel machine

f Is any predictive function of interest of a new poirt

Weights areoptimized with a kernel machined.g. support vector machine)

Intuitively, kernel methods provide decisions based on how similar a
point X is to each instance of the training set
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The Gram matrix perspective

Imagine a little task: you have read 100 novels so far.

You would like to know whether you will enjoy readinghaw novel.
A few options:

read the book...
have friends read it for you, read reviews.
try to guess, based on the novels you read, if you will like it

VNU June 12-17
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The Gram matrix perspective

Two distinct approaches

De ne what features can characterize a book.

Map each book in the library onto vectors

typically the x;'s can describe...

B # pages, language, year 1st published, country,
B coordinates of the main action, keyword counts,
B author's prizes, popularity, booksellers ranking

Challenge: nd a decision function using 100 ratings andtigas.

VNU June 12-17
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The Gram matrix perspective

De ne what makestwo novels similar,

De ne a kernelk which quanti es novel similarities.
Map the library onto a Gram matrix

2 3
k(br; br)  K(b; ) k(by; bioo)
Dk = gk(bz;bl) k(loz; by) k(bz;bloo)é

k(b K(bib)  K(bioo: bioo)

Challenge: nd a decision function that takes thid0 100 matrix as an input.
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The Gram matrix perspective

Given a new novel,

with the features approach, the prediction can be rephrased asat are the
features of this new book ? whatfeatures have | found in the past that were
good indicators of my taste?

with the kernel approach, the prediction is rephrased aghich novels this
book is similar or dissimilar to? what pool of books did I nd the most
In uentials to de ne my tastes accurately?

kernel methodsonly use kernel similarities, do not consider features.

Features can help de ne similarities, butever considered elsewhere
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The Gram matrix perspective

In summary

A feature based analysis of a data-driven problem:
2

objectsos; o " feature vectorsX = 4x; x»

A similarity based analysis of a data driven problem:

k(o1;01) k(01;0,)
objectso;;  ;0, ! GramK =§k(02:,01) k(Oz:,Oz)

k(on;01) K(0n: 02)

3

Xp2 2 R4 N

k(01;0n)3
k(Oz;on)Z

K(On: 0n)

Some parallels (can de n& = XX or X = P K or Cholesky) but...

Algorithms use either featuresr (kernel) similarities.

VNU June 12-17
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The Gram matrix perspective

\U

In kernel methods, clear separation between the kernel...

dataset X3
X2 .
x X5 Ks 5, kernel matrix

N

convex optimization

and Convex optimization (thanks to psdness oK, more later) to output the 's.
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Mathematical Considerations

di erent de nitions and properties of the same mathematicabject

VNU June 12-17
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An intuitive perspective: Feature maps

Theorem 1. A function k on X X is a positive de nite kernel if and only if
there exists a setl and a mapping from X to 12(T), the set of real
sequenced u;t 2 Tg such that ., juj® < 1, where

X
8(x;y) 2X X ;k(x;y)= (X)e (Y)e=h (X); (¥)lizx)
t2T

A very popular perspective in the machine learning world.
Equivalent to previous de nitions, less stressed in the R¥ilterature.

2 3

X | (x)zg (x)é

t2T
where the ; are a set of { possibly in nite but countable { features.
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kernels! Gram matrices

If X = fXigi2; In X,
Kx:[k(Xi;Xj)]i;jZI 0:

If one appliesany transformation ofK x which keeps eigenvalues nonnegative,
r- S, 7! Sh
K | r(K);
r(K) is a valid positive de nite matrix and hence a kernel #n

examples:K + t(t> 0);K?;eX ; etc:

in fact, if K = P PT, any transformation that preserves the spectrum's
non-negativity would be ok.

Yet... this kernel is only valid oiX , the sample, not the whole space.

Meaning somehow... Gram matric& kernels
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positive de nite kernels and distances

Kernels are often called similarities.
the higher k(x;y), the more similarx andy.

With distances, thelower d(x;y), the closerx andy.

Many distances exist in the literature. Can they be used tongekernels?

what is the link between kernels and distanceg?
high similarity Z small distance

At least true for the Gaussian kerng(x:y) = ek x yk*=2 *

Important theorems taken from [BCR84].
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Distances

De nition 1 (Distances, or metrics)A nonnegative-valued function d on
X X Is adistance if it satises, 8x;y;z2 X

() d(x;y) O, andd(x;y)=0 if and only if x = y (non-degeneracy)
(i) d(x;y)= d(y;x) (symmetry),

() d(x;z) d(x;y)+ d(y;z) (triangle ineguality)

Very simple example: X is a Hilbert spacekx yk is a distance. It is
usually called a... Hilbertian distance.

By extension, any distance(x;y) which can be written ax (x) (y)k
where mapsX to any Hilbert space is called Hilbertian metric .

Useful. To build Gaussian kernel, Laplace kerrgls;y) = e tkx vk .

Yet does not su ce:

VNU June 12-17
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the missing link: negative de nite kernels

De nition 2 (Negative De nite Kernels) A symmetric function :X X! R
IS a negative de nite (n.d.) kernel on X if

hd
cc (Xi;x;) O (1)
I;j =1

P
holds for anyn 2 N;Xq;:::;X, 2X andc;:::;c, 2 R such that in:1 ¢ =0.

Example (x;y)= kx yk2.
prove by decomposing intkx;k? + kx; k*  2h;; X i

N (X) is also a closed convex cone.

Important example:k is p.d.) K is n.d.
Converse completely false.
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negative de nite kernels & positive de nite kernels

A rst link between these two kernels:

Proposition 2. Let xp2 X andlet :X X! R be asymmetric kernel. Let

Gy)E

Then k is positive de nite

Example:kx  xok® + ky

VNU June 12-17
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IS negative de nite.

Xok® k x yk?is a p.d. kernel.
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Proof.

P
) Forxi; ;Xp,andc;; ;¢ st (L, G =0,
hd X0
CiCj' (Xi;Xj) = Ci G (Xi;Xj) 0:
ij =1 i) =1
P n
( Forxy; 'Xpn and cq; ' Cn, let cp = i1+ SetXg = Xp. Then
X0
0 Cic (Xi;Xj)
i;j =0
hd hd X0 ,
- GG (Xi;Xj)+  CiC (Xi;Xo)+ CoG  (Xo;Xj)+ ¢ (Xo;Xo):
ij =1 i=1 j=1
hd X0
= [ (XisXo)+  (Xj5%0)  (Xi5yj)  (Xo;Xo)] = GG (Xi;Xj):
ij =1 i) =1
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negative de nite kernels & positive de nite kernels

Proposition 3. For a p.d. kernelk 0on X X , the following conditions are
equivalent

(i) logk 2 N (X),
(i) k' is positive de nite for all t> O.

If k satis es either, k is said to bein nitely divisible

Proof.

logk =lim 51 n(1 k%) which is the limit of a series of n.d. kernels(if)
IS true, hencqg(ii) ) (i).

conversely, if logk 2 N (X) we use Proposition 2. Writing = logk and
choosingxg 2 X we have

ki= et (Xy) = gt (Xoxo)gl V)@ t (XiXo)g t (ViXo) 2 P (X)

VNU June 12-17 87



negative de nite kernels: (Hilbertian distance ) + ...

Proposition 4. Let :X X be a n.d. kernel. Then there is a Hilbert space
H and a mapping from X to H such that

(Gy) =k (x) (YK + F(x)+ f(y); (2)

wheref : X! R. If (x;x)=0 forall x2X thenf can bB Shosen as zero. If

the setf(x;y)] (x;y)=0gis exactlyf(x;x);x 2 Xg then IS a Hilbertian
distance.

Proof. FiX Xp and de ne

o 1
'(x;y)d=f§[ (X;X0)+ (Y:Xo)  (X;¥)  (Xo;Xo)]:

By Proposition 2' is p.d. hence there is a RKHS and mappinguch that
"(X;y)= h (x); (y)i: Hence

k (xX) (K=" x;x)+ " (y;y) 2 (Xy)

i)+ (yiy).

= () S
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distances & negative de nite kernels

whenever a n.d. kernel

vanishes on theliagonaj i.e. onf(x;x);x 2 Xg,
IS O only on the diagonal, to ensure non-degeneracy,

! P— is a Hilbertian distance foX .

More generally, for a n.d. kernel

r

(X;X) (y;y)
2 2

(X;Y) IS a (pseudonetric for X

On the contrary, to each distance does not always correspanmdd. kernel
(Monge-Kantorovich distance, edit-distanasc..)

VNU June 12-17
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In summary...

Hilbertian
metrics’ . [ A

dix;y) = (x;y) (x;x ); vy)

Set of distances oiX is D(X), Negative de nite kerneldN (X), positive and
in nitely divisible positive kernel® (X ) and P, (X) respectively.
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Some nal remarks on N (X) and P(X)

N (X) is a cone. Additionally,

f 2N (X);8c2R; + c2N (X).
if (x;x) Oforallx2X, 2N (X) forO< < 1since

Zl
:(1 )ot 1 e ! )dt
andlog(1+ ) 2N (X) since
Zl et
log(1+ )= : 1 el )Tdt

if > 0, thenlog( ) 2N (X) since

OlkF

log( ) = (I:i!rln log + = Iim log(1+c ) logc

cll
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Some nal remarks on D(X);N (X);P(X)

P(X) is a cone. Additionally,

The pointwise produck;k, of two p.d. kernels if a p.d. kernel
k" 2 P (X) E;r n 2 N (k + ¢)" too...as well aexp(k) 2 P (X):
B exp(k)= I,, a limit of p.d. kernels.
B exp(k) =exp( ( k)) where k2N (X).

The sum of two in nitely divisible kernels is not necessaii nitely divisible.

logk,s and logk,; might be inN (X), but log(k; + k»)?...
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Intuitively an important issue...

Remember that kernel methods drop all previous information

dataset X 3
X2 .
x X5 Ks 5, kernel matrix

N

convex optimization

to proceed exclusively witK .

If the kernelK is poorly informative, the optimization cannot be very uskf.
It is thereforecrucial that the kernel quanti esnoteworthy similarities .
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Kernels on vectors

(relatively) easy casewe are only given feature vectors,
with no accessto the original data.

Reminder (copy paste of previous slide!): for a family of ledsk;;  ;Kp;

P
The sum _, ik is p.d., given 1;:::5 O

The productk$*  kan is p.d., givenag;:::;a, 2 N
limy1 Ky IS p.d. (|f the limit exists!).

Using these properties we can prove the p.d. of

the polynomial kernek,(Xx;y) = ( hx; y| + b9 b>0;d2 N,
kx k
the Gaussian kerndd (x;y) = e 2 2 which can be rewritten as

2 2 )4 X
kxk kyk “\/ 1!
k (xy)= e 22e 2° Xy

!
i=0
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Kernels on vectors
the Laplace kernels, using some n.d. kernel weaponry,
k (xxy)=e ™Y 0<: 0<a 2
the all-subset Gaussian kernel Rf,

w 2 X 2
k(X, y) — 1+ ae b(xi i) — a#( I )e bkx| y K .
i=1 I f 1, .dg

A variation on the Gaussian kernel: Mahalanobis kernel,
k (xy)= e y)T o H(x Y):

iIdea: correct for discrepancies between the magnitudes eordelations of
di erent variables.

Usually is the empirical covariance matrix of a sample of points.

VNU June 12-17
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Kernels on vectors

These kernels can be seenmegta-kernels which can use any feature
representation.

Example: Gaussian kernel of Gaussian kernel feature maps,

kxyk2
kx k 2 ky k 2 2 e 22
Keg2(X;y)= ke e 22 ;e 22 =e¢e 2 2

Not sure this is very useful though!

Indeed, the real challenge is not to de ne funky kernels,

the challenge is to tune the parametebsd; ;
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Kernels on structured objects

Structured objects?

texts, webpages, documents
sounds, speech, music,

Images, video segments, movies,
3d structures, sequences, trees, graphs

Structured objects means

objects witha tricky structure ,

which cannot be simply embedded in a vector space of smaledsmonality,
without obvious algebraic properties,

structured object = that which cannot be represented in a (alh) Euclidian space
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Vectors in R and Histograms

A powerful and popular feature representation for structdrobjects:
histograms of smaller building-blocks of the object :

histograms are simple instances pifobability measures,

nonnegative coordinates, sum up to 1.

VNU June 12-17
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Standard metrics for Histograms

Information geometry , introduced yesterday, studies distances between dessi

Reference : [ANO1]

An abridged bestiary ohegative de nite distances on the probability
simplex:

o (; c): 5 5 :

X 0\2 X
o(; 9= ('i_l_P_(),; wv(; 9= i3

X p_ p_ X p_ p_
(o 9= 0 9% WG 9= i y
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Information Di usion Kernel [LLO5,ZLCO0O5]

Solve the heat equation on the multinomial manifold, usifgetFisher metric

Approximate the solution with

K d(; (): o tlarccosz(p_p_cb.

arccog is the squareg,geodesic distance between and °as elements from
the unit sphere (! = ).

In [ZLCO5]: the use of

K d(; Cbz e %arccos(p_p_cb.

IS advocated.

the geodesic distance is a n.d. kernel on thilbole sphergarccog is not).
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Transportation Metrics for Histograms

Beyond information geometry, the family dafansportation distances .

Supposer =(rq; ;rq) andc=(c;; ;cq) are two histograms irR" .

De ne the set of transportations

U(r;c)= fF2RY 9jF1=r;FT1= cg:

Transportation distances betweenandc:

deos{IC) = andr(lr_c) cosi(F):

Monge-Kantorovich : cosi{(F) = h;Di whereD is a n.d. matrix.
deost IS NOt n.d. in the general case.

Alternatives: Z

Keost(IC) = €
F2U(r;c)

cost(F ):

works when cost 0: the volume ofU(r;c) is a p.d. kernel of andc. [Cut07]
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Statistical Modeling and Kernels

Histograms cannot always summarize e ciently the structes ofX

Statistical models of complex objects provide richer exlgons:

Hidden Markov Models for sequences and time-series,
VAR, VARMA, ARIMA etc. models for time-series,
Branching processes for trees and graphs

Random Markov Fields for imagesic.

fXx1; ;Xngare interpreted as i.i.d realizations of one or many deesitonX .

These densities belong to a modeb ; 2 RYg

Can we us@enerative (statistical) models
In
discriminative (kernel and metric basednethods?
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Fisher Kernel

The Fisher kernel [JH99] between two elememtsy of X is

@np (x) '
@ e

Kn(X;y) =

™ has been selected using sample dagag(MLE),
J .1is the Fisher information matrix computed in

The statistical modeffp ; 2 g provides:

nite dimensionalfeaturesthrough the score vectors,

A Mahalanobis metric  associated with these vectors through.

Alternative formulation:

kA(X'y) - e —12(r Alnp (X)r alnp (y))TJAl(r alnp (X)r Alnp (y)):

with the meta-kernel idea.
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Fisher Kernel Extended [TKR+02,SG02]

Minor extensions, useful for binary classi cation:
. N N .
Estimate ; and ", for each class respectively,

consider the score vector of the likelihood ratio

p ()

A A X 7| E,@n Z(X)
b2 @#  A=("1")

where# = ( 1; 2)isin 2.

Use this logratio's score vector to propose instead the kérn

(YY) 78~ ()T~ (Y):
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Mutual Information Kernel: densities as feature extractor s

More bayesian avor ! drops maximum-likelihood estimation of [See(02]

Instead, useorior knowledge onfp ; 2 ¢ through adensity ! on
Mutual information kernelk; :

Z
ke (x;y)= p(X)p (y)!(d):

The feature map®) p(x) 1andO0 p((y) 1

K, IS big whenever mangommon densitiesp
score high probabilities fapoth x andy

Explicit computations sometimes possibleamely conjugate priors.

Example: context-tree kernel for strings.
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Mutual Information Kernel & Fisher Kernels

The Fisher kernel is a maximua posteriori approximation of the MI kernel

What? How? by setting the priot to the multivariate Gaussian density
N (33,1

an approximation known as Laplace's method,

Writing
@np (x)
@

logp (x) logp(x)+ ( x)():

( x)=r ~lnp (x)=
we get
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Mutual Information Kernel & Fisher Kernels

UsingN (%?J . 1) for ! yields

Z

kOGy)= p(X)p(y)!(d);
Z
C €oup 0 )T Ndogpay)+( MTC ) o NI Ny

Z
T N ANT N
= Cpa(X)pa(y) el X+ y) () ) I~ )y

= Chn(x)pa(y)e2l( ¥ YD TIAHC X+ y)
(1)

the kernel
K(X;y)

k(x; x)k(y;y)
Is equal to the Fisher kernel in exponential form.

K(x;y) = p
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Marginalized kernels - Graphs and Sequences

Similar ideas: leveragetent variable models. [TKAO02,KTIO3]
For location or time-based data,

the probability of emission of a tokex; is conditioned by
an unobserved latent variables; 2 S, whereS is a nite space of possible
states.

for observed sequences=(X1; ;Xn);Y =(VY1, :Yn), SUm over all
possible state sequences tiaeighted product of these probabillities:

X X
k(x;y) = p(sjx) p(s9y) ((x8);(y;s9)
s2S s®s

closed form computations exist for graphs & seguences.
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Kernels on MLE parameters

Use model directly to extract a single representation frobserved points:

through MLE for instance.

comparex andy through a kernek on

k(x;y) =k (7))

Bhattacharrya a nities:

Z
kK (X;y) = ) P~ (2) p~ (2) dz

for > 0.
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