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Outline of this module

e Start with convexity reminders (again...)

e Continue our review of optimization with Duality
e Introduce general convex programs

e Study practical implementations:

o Gradient descent, Newton Methods
o Equality constrained Newton Methods
o Barrier methods.

e Many slides here have been given to me by Stephen Boyd (Stanford),

e Check his book (free on the web!) with Lieven Vandenberghe and the excellent
videos of his course (youtube) if you want to dig deeper on this topic.
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Reminders: Convex set
line segment between 1 and x5: all points
r=Ar1+ (1 —N)xs

with 0 < A <1

convex set: contains line segment between any two points in the set
r1,r0€C, 0<A<1 = )\$1—|—(1—>\)£IZ2€C

examples (one convex, two nonconvex sets)
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Convex combination and convex hull

convex combination of z1,. .., xx: any point x of the form
ZC:)\liCl—l—)\QiCQ—F'“—I—)\kZCk

with A\ +---+ X =1, \; >0

convex hull (S): set of all convex combinations of points in .S
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Convex cone

conic (nonnegative) combination of x; and z5: any point of the form
r = )\1331 + )\Qibg

with A1 >0, Ao >0

L1

i)

convex cone: set that contains all conic combinations of points in the set
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Hyperplanes and halfspaces

hyperplane: set of the form {z | alx = b} (a # 0)

Lo

e «a Is the normal vector

e hyperplanes are affine and convex; halfspaces are convex
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Euclidean balls and ellipsoids

(Euclidean) ball with center z. and radius r:

B(we,r) = 12 | lr = 2clla < 7p = {we +ru | lulla < 1}

ellipsoid: set of the form
{z](x—z) Pz —z) <1}

with P € ST, (é.e., P symmetric positive definite)

other representation: {x.+ Au | ||ul|2 < 1} with A square and nonsingular
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Norm balls and norm cones

norm: a function || - || that satisfies

o |zf| =0;

z|| =0 if and only if z =0
o ||tz| = |t|||z| fort € R

o ||z +y| <z + |yl

notation: || - || is general (unspecified) norm; || - ||symb iS particular norm

norm ball with center x. and radius 7: {z | ||x — z|| < 7}

norm cone: {(x,t) | ||z] <t}

Euclidean norm cone is called second-
order cone

— o

norm balls and cones are convex
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Polyhedra

solution set of finitely many linear inequalities and equalities
Ax <D, Cx=d
(A e R™*" C e RP*" < is componentwise inequality)

aq s

as

as

0]

polyhedron is intersection of finite number of halfspaces and hyperplanes
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Positive semidefinite cone

notation:

e S” is set of symmetric n X n matrices

o ST ={X €S"| X = 0}: positive semidefinite n x n matrices
XeS! <= 2TX2>0 for all 2

Sfﬁ IS a convex cone

e SV, ={X €S§"| X > 0}: positive definite n x n matrices
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Duality

e Duality theory:

o Keep this in mind: only a long list of simple inequalities. . . .
o In the end: very powerful results at low technical /numerical cost.
o A few important, intuitive theorems.

e In a LP context:

o Dual problem provides a different interpretation on the same problem.
o Essentially assigns cost ( “displeasure” measure) to constraints.
o Provides alternative algorithms (dual-simplex).

e In a more general context:

o Very powerful tool to give approximate solutions to intractable problems.
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Optimization problem

e Consider the following mathematical program:

minimize  fo(x)
subject to  fi(x) <0, i=1,...,m
— () '

where x € D C R™ with optimal value p*.

e No particular assumptions on D and the functions f and h (nothing about
convexity, linearity, continuity, etc.)

e Very generic (includes linear programming and many other problems)
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Lagrangian

We form the Lagrangian of this problem:

L(x, A, ) ) + ZAJ@ + > phi(x)
1=1

Variables A € R™ and u € R? are called Lagrange multipliers.

e The Lagrangian is a penalized version of the original objective
e The Lagrange multipliers \;, it; control the weight of the penalties.

e The Lagrangian is a smoothed version of the hard problem, we have turned
x € C' into penalties that take into account the constraints that define C.
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Lagrange dual function

e We originally have
p
L(x, A, p) +Z>\zfz -I—Z.Uz'hz'(x)
i=1

e The penalized problem is here:

gA, 1) = infxep L(x, A, p)
= infyep fo(x) + D20 Nifi(x) + D00 pihi(x)

e The function g(\, i) is called the Lagrange dual function.

o Easier to solve than the original one (the constraints are gone)
o Can often be computed explicitly (more later)
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Lower bound

e The function g(\, ;1) produces a lower bound on p*.
e Lower bound property: If A > 0, then g(\, p) < p*
e Why?
o If x is feasible,
> fi(%x) <0 and thus \;f;(2) <0

> hz(fc) = O, and thus ,Lbzhz(jj) =0
o thus by construction of L:

g(A p) = mf L(x, A p) < L% A ) < fo(X)

o This is true for any feasible x, so it must be true for the optimal one, which

means g(\, 1) < fo(x*) = p*.

VNU June 12-17
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Lower bound

e We have a systematic way of producing lower bounds on the optimal value
p* of the original problem:

minimize  fo(x)
subject to  f;(x) <

0, =1,..
hi(x)=0, i=1,...,p

by computing the value for a given (A, 1) couple where \ > 0.

e We can look for the best possible one. . .

VNU June 12-17
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Dual problem

e We can define the Lagrange dual problem:

maximize  g(\, )
subjectto A >0

in the variables A € R™ and i € R?.

e Finds the best, that is highest, possible lower bound g(\, ;1) on the optimal
value p* of the original (now called primal) problem.

e We call its optimal value d*

VNU June 12-17
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Dual problem

e For each given x, the function
m p
L(x, A, 1) = fo(x) 4+ D> Aifi(x) + ) pihi(x)
i=1 i=1

is linear in the variables A and L.

e [ his means that the function

g(A p) = inf L(x, A, p)

is @ minimum of linear functions of (A, i), so it must be concave in (A, i)

e This means that the dual problem is always a concave maximization problem,

whatever f, g, h's properties are.

VNU June 12-17
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Weak duality

We have shown the following property called weak duality:

d*<p*

I.e. the optimal value of the dual is always less than the optimal value of the
primal problem.

e We haven't made any further assumptions on the problem
e Weak duality must always hold

e Produces lower bounds on the problem at low cost

What happens when d* = p* 7. ..

VNU June 12-17
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Strong duality

When d* = p* we have strong duality.

e Because d* is a lower bound on the optimal value p*, if both are equal for
some (x, A, i), the current point must be optimal

e For most convex problems, we have strong duality

e The difference p* — d* is called the duality gap and is a measure of how
optimal the current solution (x, A, ).
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Slater’s conditions

Example of sufficient conditions for strong duality:

e Slater’s conditions. Consider the following problem:
minimize  fo(x)
subject to  fi(x) <0, i=1,....m
Ax=b, i=1,...,p

where all the f;(x) are convex and assume that:

thereexists x € D: fi(x) <0, Ax=b, i=1,...,m

in other words there is a strictly feasible point, then strong duality holds.

e Many other versions exist. . .
e Often easy to check.

e Let's see for linear programs.
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Duality: the simple example of linear
programming
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Duality: linear programming

e Take a linear program in standard form:

minimize c¢lx

subjectto Ax=Db
x > 0 ( which is equivalent to — x < 0)

e \We can form the Lagrangian:

L(x,\p) =c'x — M'x+ pu!'(Ax — b)

e and the Lagrange dual function:

g\, p)  =infx L(x, A, 1)

= infyclx — Mx+ pul'(Ax —b)

VNU June 12-17
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Duality: linear programming

e For linear programs, the Lagrange dual function can be computed explicitly:
g\ p) =infyclx — Mx+p!f(Ax —0b)

= infy(c — A+ AT p)Ix —bly
e This is either —b’'j1 or —00, so we finally get:

—bly ife—A+ATpu=0
—00 otherwise

g(A, p) = {

o If g(\, 1) = —o0 we say that (A, ) are outside the domain of the dual.

VNU June 12-17
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Duality: linear programming
e With g(\, i) given by:

—bly ife—A+ATp=0
—00 otherwise

o) = {

e we can write the dual program as:

maximize  g(\, i)
subjectto A >0

e which is again, writing the domain explicitly:

maximize —bl
subjectto c— A+ AT =0
A>0

VNU June 12-17
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e After simplification:

c— A+ At u=0
A>0

Duality: linear programming

— c+A'u>0

e we conclude that the dual of the linear program:

e is given by:

e equivalently:

VNU June 12-17
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minimize c'x

subjectto Ax=Db (primal)
x >0

maximize —bly

subject to —ATu<c¢  (dual)

maximize b’ L
subject to AT < c
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Dual Linear Program

Up to now, what have we introduced?

A vector of parameters ;1 € R™, one coordinate by constraint.

For any 11 and any feasible x of the primal = a lower bound on the primal.
For some u the lower bound is —oo, not useful.

The dual problem computes the biggest lower bound.

We discard values of 1 which give —oo lower bounds.

This the way dual constraints are defined.

The dual is another linear program in dimensions R"*", that is

o n constraints,
o m variables.

VNU June 12-17
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From Primal to Dual for general LP’s

Rm><n

e Some notations: for A € we write

o a; for the n column vectors
o A, for the m row vectors of A.

e Following a similar reasoning we can flip from primal to dual changing

o the constraints linear relationships A,
o the constraints constants b,
o the constraints directions (<, >, =)
o non-negativity conditions,
o the objective
minimize clx maximize u''b
subject to Al x >b;, i€ M subjectto  u; >0 i€ M,
AZTXSb,L', 1 € Mo wi <0 1 € My
A;-FX = bi, 1 € M3 47 free 1€ M3
x; >0 7€ Ny ,LLTajSCj 7€ Ny
ZEJSO 7€ Ny ,LLTajZCj 7 € Ny
X j free 7€ Nq ,uTaj = Cj 7 € N3

VNU June 12-17



Dual Linear Program

e In summary, for any kind of constraint,

primal minimize maximize dual
> b; >0

constraints < b; <0 variables
— b; free
>0 < ¢;

variables <0 > cj constraints
free = ¢;j

e For simple cases and in matrix form,

minimize clx - T
: maximize b* 1
subjectto Ax=b = cubiect to ATy < ¢
x>0 J =
. - maximize b’
minimize % o subjectto ATp=c
subjectto Ax > b ) H
w>0

VNU June 12-17
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Dual Linear Program: Equivalence Theorems

Theorem 1. If we transform the dual problem into an equivalent minimization

problem and the form its dual, we obtain a problem that is equivalent to the
original problem

e The dual of the dual of a given primal LP is the primal LP itself.
e Linear programs are self-dual.
e Not true in the general case: dual of the dual is called the bi-dual.

e The tables before can be used in both directions indifferently.
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Dual Linear Program: Equivalence Theorems

Theorem 2. If we transform a LP (1) into another LP (2) through any of the
following operations:

e replace free variables with the difference of two nonnegative variables;

e replace inequality constraints by an equality constraint with a surplus/slack
variable;

e remove redundant (colinear) rows of the constraint matriz for standard
forms;

then the duals of (1) and (2) are equivalent, i.e. they are either both infeasible
or have the same optimal objective.
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Duality for LP’s : Weak Duality

We proved weak duality for general programs. Although LP’s are a particular
case the arguments are here explicit:

Theorem 3. If x is a feasible solution to a primal LP and pn is a feasible
solution to the dual problem then

wIb <clx

e Proof idea check what is called the complementary slackness variables
wi(Alx —b;) and (¢; — p''a;)x; and use the primal/dual relationships.

VNU June 12-17
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Weak Duality Proof

Proof. e Let x € R" and 1 € R™ and define

w; = i (Alx—b;) i=1,..m
v, =(c;—pla))x; j=1,.,n

e Suppose x and u are primal and dual feasible for an LP involving A, b and c.

e Check Equations [Il. Whatever the constraints are,

o u; and (Alx — b;) have the same sign or their product is zero.
o The same goes for (¢; — u''a;) and x;.

e Hence u;,v; > 0.
e Furthermore 3 7" u; = ' (Ax —b) and 3 " v; = (¢! — p" A)x
o Hence 0 <> "+ v =c'x—pu'b

VNU June 12-17
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Weak Duality

e Not a very strong result at first look.

e Specially since we already discussed strong duality...

e Yet weak duality provides us with the two simple yet important corollaries.
e |n the following we assume that the primal is a minimization.

e As usual, results can be easily proved the other way round.

VNU June 12-17
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Weak Duality Corollary 1

Corollary 1. e If the objective in the primal can be arbitrarily small then the
dual problem must be infeasible.

o [f the objective in the primal can be arbitrarily big then the dual problem
must be infeasible.

Proof. e By weak duality, 1’ b < ¢’'x for any two feasible points x, /.

e If the objective for feasible x can be set arbitrarily low, then a feasible u
cannot exist.

e The same applies for a feasible x if the dual objective can be arbitrarily high.
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Weak Duality Corollary 2

Corollary 2. Let x* and p* be two feasz'ble solutions to the primal and dual
respectively. Suppose that p*'b = c!'x*. Then x* and u* are optimal
solutions for the primal and dual 'respectzvely.

T

Proof. For every feasible point of the primal y, c’x* = ;*'b < ¢’y hence x* is

optimal. Same thing for u*. =

e Let's check whether strong duality holds or not for linear programs...
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Strong Duality

e For linear programs, strong duality is always ensured.
e We use the simplex’s convergence to the optimal solution in this proof.

e \We will cover a more geometric approach in the next lecture.

Theorem 4. if an LP has an optima, so does its dual, and their respective
optimal objectives are equal.

e Proof strategy:

o prove it first for a standard form LP, showing that the reduced cost
coefficient can be used to define a dual feasible solution..
o For a general LP, use Theorem
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Strong Duality: Proof 1

Proof. e Consider the standard form

minimize clx
subjectto Ax=Db
x >0

e Let's use the simplex with the lexicographic rule for instance. Let x be the
optimal solution with basis I and objective z.

e The reduced costs must be nonnegative (here we have a min problem) hence

c' —ci By 'A>0"

o Let u¥' =cI'B;y!. Then uTA < T coordinate wise.
e . is a feasible solution to the dual problem.
e Furthermore uTb = c¢{ By 'b = ci'x1 = 2.

e ;i is thus optimal w.r.t to the dual following the previous corollary.

VNU June 12-17
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Strong Duality: Proof 2

e Suppose now that we have a general LP (1).

e Through operations as described in Theorem [2 the program is changed into an

equivalent standard program (2). They share the same optimal cost.
e The dual of program (D2) has the same optimal cost in turn.
e Both (D2) and (D1) have the same optimal cost by Theorem 2.

e Hence (1) and (D1) have the same optimal cost.

VNU June 12-17
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Complementary slackness

e Another important result that links both optima:

Theorem 5. Let x and u be feasible solutions to the primal and dual

problems respectively. The vectors for x and p are optimal solutions for the
two respective problems if and only if

wi(Alx—b) =0, i=1,..,m;
O (Cj — ,uTaj)Xj = O, ] — 1, s N

Proof. In the proof of the weak duality we showed that u;,v; > 0. Moreover

OS zm:ui—l—znjvj :CTX—,MTb.
i J

Hence, x, 1 optimal < u; = v; = 0 through strong duality (=) and the second
corollary of weak duality («<=). =
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Duality

e A simple example with the following linear program:
minimize  3x1 + X9

subject to xo — 221 =1
L1, X2 2 0

e Two inequality constraints, one equality constraint. The Lagrangian is written:
Lz, \, ) = 3x1 + 22 — M1 — Aoxo + (1 — 20 + 221)

in the (dual variables) A1, Ao > 0 and pu (free).
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Duality

g\ p) = inf L(x, A, p)
= inf 3331 + X9 — )\1£61 — )\Qibg + u(l — T9 + 2331)

= ir}if(S — M F2u)rr+ (1= Ao — p)zo +

e \We minimize a linear function of x1, x2, only two possibilities:

o f3—M+2u=1—XA—pu=0
9(A ) _{ —00 otherwise

e The dual problem is finally:
maximize U

subjectto 3— A1 +2u =0
1—>\2—,LL:O,>\ZO
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Duality and Arbitrage

e We propose in this an economic interpretation of duality

e Due to Arrow, Debreu, in the 50's. . .
e Used every day on financial markets (sometimes unknowingly)

e Simple LP duality result, but underpins most of modern finance theory. . .

VNU June 12-17
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One period model

e As in the previous section, basic discrete, one period model on a single asset.
e |ts price today is ¢;. Its (random) price time 7" ahead is x.

e Assume x can only take any of the following values

x €{xy,...,xn}

at a maturity date 7', and that we have an estimate of their probabilities,

{pla e 7pn}

e \We have discretized the space of possibilities.
e \We can only trade today and at maturity
e There is a cash security worth $1 today, that pays $1 at maturity

e near-zero interest rates. sounds familiar?
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One period model

e There are also m — 1 other securities with payoffs at maturity given by
hi(x;) ifx =x; at time T

fork=2,...,m—1.

e The payoffs are arbitrary functions of the n possible values of the asset at
time T'.

e We could have hi(z) = x?. Or that for i < j, hp(z;) =0, 4 > 4, hp(z;) = 1.

e We denote by g; the price today of security k£ with payoff hy(x).

All these securities are tradeable, can we use them to get information on the price
of another security with payoff hg(x)?
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Static Arbitrage
Remember:

e \We can only trade today and at maturity.

e \We can only trade in securities which are priced by the market.
We want to exclude arbitrage strategies

e If the payoff of a portfolio A is always larger than that of a portfolio B then
Price(A) > Price(B).

e The price of the sum of two products is equal to the sum of the prices.

VNU June 12-17
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Simplest Example: Put Call Parity
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payoff

o
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Price bounds

Suppose that we form a portfolio of cash, stocks and securities hy(x) with

coefficients Ag:
Ao In cash

A1 In stock
A in security hy(x)

e All portfolios that satisfy

)\0 -+ )\1552' -+ Z )\khk(azz) 2 hg(xz) I:]., .. ,N
k=2

must be more expensive than the security hg(x)
e All portfolios that satisfy the opposite inequality must be cheaper
e For portfolios that satisfy neither of these, nothing can be said. . .

e We are just comparing portfolios dominated for all outcomes of x.
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Price bounds

e For each of these portfolios, we get an upper/lower bound on the price today
of the security ho(x).

e We can look for optimal bounds. . .

e \We can solve:
minimize Ao+ A1q1 + Y11 MeQk

subject to )\0 + )\133@' + 2?22 )\khk(ﬂjz) > ho(ﬂ?i), 1= 1, ooy

o Linear program in the variable A € R(™*1)
o Produces an optimal upper bound on the price today of the security ho(x)

VNU June 12-17
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Linear Programming Duality
e The original linear program looks like:

minimize  ¢I')\
subject to AN > b

which is a linear program in the variable A € R™.

e We can form the Lagrangian
L\ p) =c"A+y" (b— AN

in the variables A € R™ and y € R", with y > 0.

VNU June 12-17

54



Linear Programming Duality

e We then minimize in A\ to get the dual function
g(y) = irif X4yl (b— AN
for y > 0, which is again
gy) =infy"b+A"(c— Aly)

and we get:
Th ife—ATy=0
9(y) = { Y /

—oo If not.

VNU June 12-17
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Linear Programming Duality

e With o AT X
|y ifc— Ay =
9(y) = { if not.

— 00

e we get the dual linear program as:
maximize b’y
subject to Aly = c
y >0

which is also a linear program in x € R".

VNU June 12-17
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LP duality: summary
e The primal LP is the original linear program looks like:

minimize  ¢I')\
subject to AN > b

e its dual is then given by:

maximize bly
subject to Aly = c
y >0

Strong duality: both optimal values are equal

VNU June 12-17
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LP duality & arbitrage

e Let's look at what this produces for the portfolio problem. . .

o The primal problem in the variable A\ € R™ is given by:
pma‘x ‘= min. )\0 + )\1Q1 + ZZLIQ )\qu
S.t. Ao+ \x; + 2?22 )\khk(fz) > ho(xz-),

o The dual in the variable y € R" is then

max ,__

p — Mmax. Z:L:lyzho(wz)

st Y yihe(r) =qu, k=2,...

Z?:l Yil; = q1
mn

Zizl y; = 1

y >0

VNU June 12-17
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LP duality & arbitrage

e The last two constraints {d> ", y; = 1, y > 0} mean that y is a probability
measure.

e \We can rewrite the previous program as:
pr = max. E,[ho(x)]
s.t. Eylhg(z)) =g, kE=2,...,m

E,[z] = q
y is a probability

e We can compute p™ by minimizing instead.
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LP duality & arbitrage

e What does this mean?
e There are three ranges of prices for the security with payoff hg(x):

o Prices above p™?*: these are not viable, you can get a cheaper portfolio
with a payoff that always dominates ho(z).

o Prices in [p™, p™aX]: prices are viable, i.c. compatible with the absence of
arbitrage.

o Prices below p™™: these are not viable, you can get a portfolio that is more
expensive than hg(x) with a payoff that is always dominated by hg(x).
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Price bounds

e Example:

o Suppose the product in the objective is a call option:

where K is called the strike price.
o Suppose also that we know the prices of some other instruments
o We get upper and lower price bounds on the price of this call for each strike K

e On a graphic. . .

VNU June 12-17 61



option price
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LP duality & arbitrage

e What if there is no solution y and the linear program is infeasible?

o Then the original data set ¢ must contain an arbitrage.
o Start with one product, stock and cash. . . and test.
o Increase the number of products. . .

VNU June 12-17

63



LP duality & arbitrage

Fundamental theorem of asset pricing

Theorem 6. In the one period model, there is no arbitrage between the prices
{q0,-.-,qm} of securities with payoffs at maturity {ho(z), ..., hn(x)}

0

There exists a probability y (with >, y; =1 and y > 0) such that

g = Ey|hg(x)], k=0,...,m

VNU June 12-17
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LP duality & arbitrage

e Because prices are computed using expectations under y (and not expected
utility /certain equivalent), we call the probability y risk-neutral.

e In particular, it satisfies ¢ = E,|z]

e |f there are constant interest rates, simply use discounted values for prices at
maturity. . .

e This probability ¥ has nothing to do with the observed distribution of the
asset x or its past distribution! (Very common mistake)
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LP duality & arbitrage

e Because one can trade

o the asset
o derivative products based on the asset

to form portfolios to hedge/replicate other products, it is possible to evaluate

these products using expected value under an appropriate choice of
probability.

e Again, the risk-neutral probability y is a tool inferred from market prices,
e it has nothing to do with the statistical properties of the underlying asset x.

e Linear programming duality is interpreted as a duality between portfolios on
assets problems and probabilities (models)

VNU June 12-17
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LP duality & arbitrage

In the previous result:

e Set of possible probabilistic models = probability simplex:

e Expected value, hence price is linear in the probability p;

Elh(z)] = Zpih(wi)

e A price constraint is just a linear equality constraint on the probabilities:

sz'h(%) = b;
e Simple family of distributions.
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Moment constraints

Choices for asset pricing formulas that depend on the prices directly:. . .

e Use indicator function as payoff:

h(z) = liz>K)

to produce the constraint:

> pilgsry=PX>K)=b

e Also, quadratic variation:

Corresponds to:
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Moment constraints

Higher order formulations? Variance?

e \We can't incorporate a variance swap

e A constraint of the form
Variance(x) = qy
why?

e Becomes > . piz? — (3. pix;)? = qv = quadratic constraints in p;.

e Would however works if we also fix the expected value:
E[z] =0

Corresponds to a forward price (EV of the asset):

sz- r; =qr and Variance(x) = sz- 7 — g5 = qu
i i

e \We came back to a simple linear constraint
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Option price vs. variance

e Fix the forward price (expected value of the asset), move the variance. . .

e We study the price of a call option hy.

maximize ) . p; ho(z;)

subject to > . p; z; = Sp

> pi v = b

e Look at the price as a function of b. . .
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Price
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Option price vs. variance
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Option pricing

Option pricing example. . .

e Study the price CutCall option, with payoff:

ho(X) = (X — K)Tlix<r)

e Similar to knock-out option but only check at maturity. No knock-out
during its life, european kind of knock-out.

e Get some market prices ¢ for regular calls:

hi(X) = (X — K;)*

e Solve for the maximum CutCall price:

maximize . p;ho(x;)
subject to > . pihi(x;i) = qx

Zipi =1

pi >0

VNU June 12-17
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Option pricing

Solve
maximize > . piho(x;)
subject to ) . pihi(x;) = qi
>ipi=1
pi = 0
with

K = {50, 80,110,120, 150, 280}

and vector of prices for the 6 options.

g = (102.9167,79.5667, 59.2167, 53.1000, 36.7500, 0.5667)

e Prices were computed above using the uniform distribution on [0, 300]
e Result: maximum price for the CutCall is 59

e Next slide: risk neutral distribution for that maximal price.
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Option pricing

e Problem in dimension 2, price a basket options with payoff

(21 + @2 — K) 4

e The input data set is composed of the asset prices together with the following
call prices:
( 2%1 + X9 — 1)_|_, ( 5331 + .SZCQ — .8)_|_,
( 5£61 + 3%2 — 4)_|_, (331 + .SZCQ — .5)_|_,
(331 + 5332 — 5)_|_, (513‘1 + .4332 — 1)_|_,
(
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Option pricing
Run another test:

e Look at how these bounds evolve as more and more instruments are
incorporated into the data set.

e Fix K =1, we compute the bounds using only the £ first instruments in the
data set, for k=2,...,7.

e Plot the upper and lower bounds

e Also plot one of the solutions

Conclusion: more market values = tighter bounds

VNU June 12-17



VNU June 12-17

price

0.5

0.45

0.4

0.35

0.3

0.25

0.2

0.15

Option pricing

80



ion pricing

Opt

Figure 1: Example of discrete distribution minimizing

the price of (x1 + z2 — K) .
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Caveats
Sizel

e Grows exponentially in £™ with the number of points

e Only works with discrete and bounded models

Everything comes at a price. . .
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82



VNU June 12-17

Duality in a more general setting

83



Example: Two-way partitioning

minimize z!Wzx
subjectto z?=1, i=1,...,n

e a nonconvex problem; feasible set contains 2" discrete points

e interpretation: partition {1,...,n} in two sets; W;, is cost of assigning i, j to
the same set; —W;; is cost of assigning to different sets

dual function

x x

g(v) = inf(x! Wz + Z vi(z? — 1)) = infz? (W + diag(v))z — 11w
B —1Ty W +diag(v) = 0
—o0  otherwise

lower bound property: p* > —11v if W + diag(v) = 0

example: v = —Apin(W)1 gives bound p* > nAyin(W)
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Lagrange dual and conjugate function
minimize  fo(x)
subject to Az <b, Cx=d

dual function

g\, v) = inf (fo(z) + (A" X+ C"v)'x ="' N —d'v)

xedom f

= —fo(=AT'N-CTv)—bv"'X—d'v

e fJ is the convex conjugate of fy: f*(y) = Supxedomf(yTiU — f(x))

e simplifies derivation of dual if conjugate of f; is known

example: entropy maximization

n

mn
— g x;log x;, edi™
i=1

1=1

VNU June 12-17
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Quadratic program

primal problem (assume P € S _ )

minimize z! Pz
subject to Az <b

dual function

1
g(\) = inf (2" Pz + X" (Az — b)) = —EATAP”AT)\ —blA

X

dual problem —  imize —(1/4)\TAP~1AT) — b7\

subjectto A >0

e from Slater’'s condition: p* = d* if Ax < b for some T

e in fact, p* = d* always

VNU June 12-17
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A nonconvex problem with strong duality

minimize z% Ax + 201
subject to z'z <1

nonconvex if A % 0

dual function: g(\) = inf, (21 (A + X))z + 2012 — \)

e unbounded below if A+ A /0orif A+ X[ =0and b¢ R(A+ A)
e minimized by x = —(A + X )Tb otherwise: g(\) = —bT (A + XI)Tb — )

dual problem:
maximize —bT (A + \I)Th — )
subjectto A+ A =0
be R(A+ A

strong duality although primal problem is not convex (not easy to show)
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Geometric interpretation

for simplicity, consider problem with one constraint fi(x) <0

interpretation of dual function:

o) = inf (t+Xu).  where G={(fi(x). fo(@)) | * € D}

e \u+t=g(\)is (non-vertical) supporting hyperplane to G

e hyperplane intersects t-axis at t = g(\)

VNU June 12-17
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epigraph variation: same interpretation if G is replaced with

A={(u,t) | fi(x) <wu, fo(x) <t for some x € D}

t

Au+t = g(\)
g(A)

strong duality

e holds if there is a non-vertical supporting hyperplane to A at (0, p*)

e for convex problem, A is convex, hence has supp. hyperplane at (0, p*)

~

e Slater's condition: if there exist (u,t) € A with @ < 0, then supporting
hyperplanes at (0, p*) must be non-vertical
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Complementary slackness

assume strong duality holds, x* is primal optimal, (A*, v*) is dual optimal
m p

Bt = g0 0) = (fo(:v) SIS u:hi@c))
i=1 i=1

< fo@)+ Y N fila) + Y vihi(a)
=1 1=1
fo(z™)

INA

hence, the two inequalities hold with equality

e * minimizes L(xz, \*,v*)

e \'fi(x*)=0fori=1,...,m (known as complementary slackness):

)\: > (0= fz(ib*) = 0, fZ(ZE*) < 0= )\: =0

VNU June 12-17
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Karush-Kuhn-Tucker (KKT) conditions

the following four conditions are called KKT conditions (for a problem with
differentiable f;, h;):

primal constraints: f;(z) <0,i=1,...,m, hi(x) =0,i=1,...,p
dual constraints: A > 0

complementary slackness: \;fi(x) =0,i=1,...,m

= b =

gradient of Lagrangian with respect to x vanishes:

V fo(x }:AVﬂ z:th

if strong duality holds and x, A, v are optimal, then they must satisfy the KKT
conditions
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KKT conditions for convex problem

~

if x, \, U satisfy KKT for a convex problem, then they are optimal:

e from complementary slackness: fo(%) = L(&, \, D)

e from 4th condition (and convexity): g(\,7) = L(%, \, D)

~

hence, fo(2) = g(A, )

if Slater’s condition is satisfied:

x Is optimal if and only if there exist A, v that satisfy KKT conditions

e recall that Slater implies strong duality, and dual optimum is attained

e generalizes optimality condition V fy(z) = 0 for unconstrained problem

VNU June 12-17
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example: water-filling (assume «; > 0)

minimize  —Y "  log(x; + «;)
subjectto x>0, 1lz=1

z is optimal iff z = 0, 17z = 1, and there exist A\ € R”, v € R such that

1

—I—)\Z‘:V
iCZ'—I—OéZ'

o ifv<l/a;: \y=0and z; =1/v — o
o ifv>1/a;: \j=v—1/a; and z; =0

e determine v from 172z =>"" max{0,1/v —a;} =1

interpretation

e n patches; level of patch 7 is at height «;

e flood area with unit amount of water

e resulting level is 1/v*
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Unconstrained Convex Optimization
Algorithms

e terminology and assumptions
e gradient descent method

e steepest descent method

e Newton's method

e self-concordant functions

e implementation

VNU June 12-17
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Unconstrained minimization
minimize f(x)

e f convex, twice continuously differentiable (hence dom f open)

e we assume optimal value p* = inf, f(x) is attained (and finite)

unconstrained minimization methods

e produce sequence of points z(*) € dom f, k= 0,1, ... with

f@™) — p*

e can be interpreted as iterative methods for solving optimality condition

Vfz*)=0

VNU June 12-17
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Initial point and sublevel set

algorithms in this chapter require a starting point z(°) such that
o 29 ¢ dom f
e sublevel set S = {z | f(z) < f(2(®)} is closed

2nd condition is hard to verify, except when all sublevel sets are closed:

e equivalent to condition that epi f is closed
e true if dom f = R"

o true if f(x) — oo as x — ddom f

examples of differentiable functions with closed sublevel sets:

fla) = log(} explalz +b)),  f(x) == log(b — al

1=1

VNU June 12-17
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Strong convexity and implications

f is strongly convex on S if there exists an m > 0 such that

V2f(x) = ml forall x € S

implications

o for x,y €5,

) 2 @) + V@) (y = 0) + Slle = yl3

hence, S is bounded

e p* > —o0, and for z € §,

1
f@) 0" < o IVF@)3

useful as stopping criterion (if you know m)

VNU June 12-17

97



Descent methods

2D = o) WAL ith FaD) < f(20)

e other notations: 7 =z + tAx, x := x + tAx
e Aux is the step, or search direction; t is the step size, or step length

e from convexity, f(z™) < f(x) implies Vf(z)' Az < 0
(i.e., Az is a descent direction)

General descent method.

given a starting point r € dom f.

repeat
1. Determine a descent direction Ax.
2. Line search. Choose a step size t > 0.
3. Update. = := z + tAx.

until stopping criterion is satisfied.

VNU June 12-17
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Line search types

exact line search: ¢t = argmin,., f(x + tAz)

backtracking line search (with parameters a € (0,1/2), 5 € (0,1))

e starting at £t = 1, repeat ¢ := (3t until

flx+tAz) < f(z) + atVf(z)! Ax

e graphical interpretation: backtrack until ¢ < ¢

f(x 4+ tAx)

@) + V@) A F@) etV (@) A
N | t
t=20 to
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Gradient descent method

general descent method with Az = —V f(x)

given a starting point r € dom f.

repeat
1. Ax := =V f(x).
2. Line search. Choose step size t via exact or backtracking line search.
3. Update. z := x + tAx.

until stopping criterion is satisfied.

e stopping criterion usually of the form |V f(z)|2 < €

e convergence result: for strongly convex f,

f@™) —p* < (@) - pY)

c € (0,1) depends on m, (9, line search type

e very simple, but often very slow; rarely used in practice
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quadratic problem in R?

flz) = (1/2)(x] + yx3) (v > 0)

with exact line search, starting at z(°) = (v, 1):

k k
oG
L =T\ 7] > Lo = | ——
v+ 1 v+ 1

e veryslowif y>1orvy <1

e example for v = 10:

4,
g 0
— 4l
—10 0 10
X1
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nonquadratic example

:El—|—3332—0.1_|_6331—3332—0.1_i_ —x1—0.1

f(iU1,£U2) = € e

backtracking line search exact line search
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a problem in R'"Y

104
102
109
102
ing |.s.
_4 | |
1077, 50 100 150 200

‘linear’ convergence, i.¢e., a straight line on a semilog plot
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Steepest descent method
normalized steepest descent direction (at x, for norm || - ||):
Azpeq = argmin{V f(z)' v | ||[v]| = 1}

interpretation: for small v, f(x +v) =~ f(z) + Vf(x)lv;
direction Ax,q is unit-norm step with most negative directional derivative

(unnormalized) steepest descent direction
Azgq = ||V f(2)||+AZnsd

satisfies V f(z2)T Agq = — ||V f(x)]?

steepest descent method
e general descent method with Ax = Az

e convergence properties similar to gradient descent
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examples

e Euclidean norm: Axyq = —Vf(x)

e quadratic norm ||z|p = (2T Pz)1/2 (P €S.): Argyq =P Vf(x)
e /1-norm: Axgq = —(9f(x)/0x;)e;, where |0f(x)/0z;| = ||V f(x)| oo

unit balls and normalized steepest descent directions for a quadratic norm and the
/1-norm:

—V f(x)

—Vf(x)

Ax
nsd Awnsd

VNU June 12-17 105



choice of norm for steepest descent

e steepest descent with backtracking line search for two quadratic norms
o ellipses show {z | ||z — z®||p = 1}

e equivalent interpretation of steepest descent with quadratic norm || - || p:
gradient descent after change of variables z = P1/2z

shows choice of P has strong effect on speed of convergence
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Newton step

Azy = —V2f(2) 'V f(x)
interpretations

e = + Ax,; minimizes second order approximation

AN

Fla+v) = f(@) + VI @) 0+ 50"V f (o)

e r + Aux,; solves linearized optimality condition

Vi@ +v) = Vi +v) = Vf(z)+ Vf(z)o =0

~ /
f /
= (CE + A:Enta f/(x + Awnt))

(z, f'(@))

(z, f(x))
(CU + A-fcnta f(CL‘ + Awnt)—)r
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o Aux, is steepest descent direction at x in local Hessian norm

1/2
lullv2p@) = (u" V2 f(z)u)

dashed lines are contour lines of f; ellipse is {z + v | v!VZf(z)v = 1}

arrow shows —V f(x)
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Newton decrement

_ 1/2
Az) = (Vf(2)TV2 (2) 'V ()
a measure of the proximity of x to x*
properties

*

e gives an estimate of f(xz) — p*, using quadratic approximation f

() — inf Fly) = JM(@)?

e equal to the norm of the Newton step in the quadratic Hessian norm

1/2

Az) = (Azne V2 f(2) Ay

e directional derivative in the Newton direction: V f(x)! Az, = —A(x)?

e affine invariant (unlike ||V f(z)]|2)
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Newton’s method

given a starting point z € dom f, tolerance € > 0.

repeat
1. Compute the Newton step and decrement.
Axy = —V2f(2) " IVf(x); N :=Vf(a)!V2f(x)"1Vf(x).
2. Stopping criterion. quit if \?/2 < e.
3. Line search. Choose step size t by backtracking line search.
4. Update. x == x + tAxyy.

affine invariant, 7.e., independent of linear changes of coordinates:

Newton iterates for f(y) = f(T'y) with starting point y(© = T2 are

Y ) = =15 (F)
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Classical convergence analysis

assumptions

e f strongly convex on S with constant m

° V2f is Lipschitz continuous on S, with constant L > 0:

IV2f(z) = V2 f(W)ll2 < Lllz — yll2

(L measures how well f can be approximated by a quadratic function)

outline: there exist constants € (0,m*/L), v > 0 such that

o i [VF(@)l>n, then f(a1) — f(z®) < —
o if V£ (2)]> <7, then

L (k+1) L NRY
2—777/2“Vf(3C )2 < 2—mQHVf(iU )2

VNU June 12-17
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damped Newton phase (||Vf(x)|2 > n)

e most iterations require backtracking steps
e function value decreases by at least

e if p* > —00, this phase ends after at most (f(x(9)) — p*)/~ iterations

quadratically convergent phase (||Vf(z)|2 < n)

e all iterations use step sizet =1

o |V f(x)||2 converges to zero quadratically: if |V f(2*)||s < n, then

2l—k

L L
el VI < (5sIVA@OI:) < (3) o zk

2l—k
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conclusion: number of iterations until f(z) — p* < € is bounded above by

f(a%) —p*

e 7, €y are constants that depend on m, L, z(°)

e second term is small (of the order of 6) and almost constant for practical
purposes

e in practice, constants m, L (hence 7, €y) are usually unknown

e provides qualitative insight in convergence properties (i.e., explains two
algorithm phases)
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Examples

example in R® (page I02)

e backtracking parameters a = 0.1, 3 = 0.7
e converges in only 5 steps

e quadratic local convergence
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example in R'"Y (page [03)

10° 2
exact line search
10Y 1.5}
S
. -~
0B | backtracking 8 4 .
w0
. o
exact line search %
10~ 10 0.5 acktracking
10710 ‘ ) ‘ ‘ 0 ‘ ‘
0 2 4 6 8 10 0 2 4 6 8
k k

e backtracking parameters o = 0.01, 6 = 0.5
e backtracking line search almost as fast as exact |.s. (and much simpler)

e clearly shows two phases in algorithm
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example in R'%Y (with sparse ;)

10000 100000

f(x)=— Z log(1 — z%) — Z log(b; — a; )

10°
109
10~°F
0 5 10 15 20
k

e backtracking parameters ao = 0.01, 3 = 0.5.

e performance similar as for small examples
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A few words on Self-concordance

shortcomings of classical convergence analysis

e depends on unknown constants (m, L, .. .)

e bound is not affinely invariant, although Newton’'s method is

convergence analysis via self-concordance (Nesterov and Nemirovski)

e does not depend on any unknown constants
e gives affine-invariant bound
e applies to special class of convex functions (‘self-concordant’ functions)

e developed to analyze polynomial-time interior-point methods for convex
optimization

e Please check Boyd & Vandenberghe book for a review!
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Implementation

main effort in each iteration: evaluate derivatives and solve Newton system
HAx =g

where H = V?f(x), g = -V f(2)

via Cholesky factorization
H=LL"  Axyw=L"L'g,  Xax)=|L 9|2

e cost (1/3)n? flops for unstructured system

e cost < (1/3)n? if H sparse, banded
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example of dense Newton system with structure
fl@) =) thi(w;) +o(Az+b),  H=D+ ATHyA
i=1

e assume A € RP*", dense, with p < n

e D diagonal with diagonal elements ! (x;); Hy = V%o(Ax + b)

method 1: form H, solve via dense Cholesky factorization: (cost (1/3)n?)

method 2: factor Hy = LOLg; write Newton system as
DAz + A'Low = —g, LiAAx —w =0
eliminate Ax from first equation; compute w and Ax from
I+ LEAD'"ATLo)yw = -LEAD g, DAz = —g— AT Lyw
cost: 2p°n (dominated by computation of LI AD™1AL)
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Convex Optimization Algorithms With
Equality Constraints

e equality constrained minimization
e Newton's method with equality constraints
e infeasible start Newton method

e implementation
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Equality constrained minimization

minimize  f(x)
subject to Az =1b

e f convex, twice continuously differentiable
o Ac RV with Rank A = p

e we assume p*~ is finite and attained

optimality conditions: x* is optimal iff there exists a v* such that

Vf(x*)+Alv* =0, Ax* =b

VNU June 12-17
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equality constrained quadratic minimization (with P € S/)

minimize  (1/2)z' Pz +q¢'a +r
subject to Az =0b

o =LY

e coefficient matrix is called KKT matrix

optimality condition:

e KKT matrix is nonsingular if and only if

Ar =0, x#0 — ' Px > 0

e equivalent condition for nonsingularity: P+ ATA >~ 0

VNU June 12-17
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Newton step

Newton step of f at feasible x is given by (1st block) of solution of

7 )L

interpretations

e Aux,; solves second order approximation (with variable v)

AN

minimize  f(z +v) = f(z) + Vf(2)' v+ (1/2)v1 V2 f(z)v
subject to A(x +wv) =10

e cquations follow from linearizing optimality conditions

Vi + Azy) + Aw =0, A(x 4+ Axpt) = b
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Newton decrement

1/2

Ax) = (A;c;ﬁ];v?f(:p)mm) — (—Vf(:c)TAacnt) H/2
properties
e gives an estimate of f(z) — p* using quadratic approximation f

flz)— inf fly) = sA()’

Ay=b

e directional derivative in Newton direction:

d _ 2
af(x + tAxpt) = —\(x)

e in general, \(z) # (Vf(lv)TVQf(:v)_lvj"(g;))l/Q

VNU June 12-17

124



Newton’s method with equality constraints

given starting point x € dom f with Ax = b, tolerance € > 0.
repeat
1. Compute the Newton step and decrement Az, A(x).
2. Stopping criterion. quit if \?/2 < e.
3. Line search. Choose step size t by backtracking line search.
4. Update. © := x + tAxy.

e a feasible descent method: z(¥) feasible and f(:v(k+1)) < f(a:(k))

e affine invariant
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Newton step at infeasible points

extends to infeasible = (i.e., Ax # b)

linearizing optimality conditions at infeasible z (with x € dom f) gives

eIl

primal-dual interpretation

e write optimality condition as r(y) = 0, where
y=(z,v), r(y)=(Vf(x)+A"v, Az —b)

e linearizing r(y) = 0 gives r(y + Ay) ~ r(y) + Dr(y)Ay = 0:

e [T

same as ([II) with w = v 4+ Avy
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Infeasible start Newton method

given starting point « € dom f, v, tolerance ¢ > 0, a € (0,1/2), 8 € (0,1).
repeat
1. Compute primal and dual Newton steps Az, Avyy.
2. Backtracking line search on ||r||2.
t:= 1.
while ||7(x + tAxyn, v + tAvy) |2 > (1 — at)||r(z, v)
3. Update. v :=x + tAxy, vV :i= v + tAvy.
until Az = b and ||r(z,v)|2 < e

2, .= 6t.

e not a descent method: f(z**+1)) > f(2¥)) is possible

e directional derivative of ||r(y)||5 in direction Ay = (Azyg, Avyy) is

d

2 Ir(y + Ayl T =l ()2
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Solving KKT systems

solution methods

e LDLT factorization

e climination (if H nonsingular)

AH *ATw=h—-AH 'y, Hv=—(g+ At w)

e elimination with singular H: write as

H+ ATQA AT vo| g+ ATQh
A 0 w | h

with Q > 0 for which H + ATQA > 0, and apply elimination
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Equality constrained analytic centering
primal problem: minimize — """ | logx; subject to Ax =b

dual problem: maximize —b'v + > "  log(A'v); + n

three methods for an example with 4 € R*?*°% different starting points

1. Newton method with equality constraints (requires 2(?) = 0, Az(®) = b)

10°
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2. Newton method applied to dual problem (requires ATpO) 0)

—10 ‘ ‘ ‘ ‘
100" 2 4 . 6 8 10

3. infeasible start Newton method (requires (9 > 0)

25
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complexity per iteration of three methods is identical

1. use block elimination to solve KKT system

diagflx)—2 %T ] [ wa ] B [ diag(z)~1 ]

reduces to solving Adiag(z)?ATw =b
2. solve Newton system Adiag(A’v)2ATAv = —b+ Adiag(ATv)~ 11
3. use block elimination to solve KKT system

s ][] <[

reduces to solving Adiag(z)?ATw = 2Ax — b

conclusion: in each case, solve ADA”w = h with D positive diagonal
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Network flow optimization

minimize > . ¢i(xz;)
subject to Az =0b
e directed graph with n arcs, p + 1 nodes

e x;: flow through arc i; ¢;: cost flow function for arc i (with ¢/ (x) > 0)

e node-incidence matrix A € R(PHDX" defined as

1 arc j leaves node 1
A;; =< —1 arcj enters node ¢
0 otherwise

e reduced node-incidence matrix A € RP*™ is A with last row removed
e b € RV is (reduced) source vector

e Rank A = p if graph is connected
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KKT system

5 e =10

o H =diag(¢7(x1),...,9!(xy,)), positive diagonal

e solve via elimination:
AH *ATw=h - AH 'y, Hv=—(g+ At w)
sparsity pattern of coefficient matrix is given by graph connectivity

(AHT'AY)i; #0 <= (AA");; #0

<= nodes ¢ and j are connected by an arc
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The real deal: General Convex Problems

e inequality constrained minimization

e logarithmic barrier function and central path
e barrier method

e feasibility and phase | methods

e complexity analysis via self-concordance

e generalized inequalities
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Inequality constrained minimization

minimize  fo(x)
subject to fz( ) <0, i=1,....m (1)
Ax =10

e f, convex, twice continuously differentiable
o Ac R with Rank A = p
e we assume p~ is finite and attained

e we assume problem is strictly feasible: there exists & with
x € dom f, fz(fi)<07 1=1,...,m, Ax = b

hence, strong duality holds and dual optimum is attained
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Examples

e LP, QP, QCQP, GP
e entropy maximization with linear inequality constraints
minimize > " x;logx;
subject to Fx <Xg
Ax =D
with dom f, = R’ |

e differentiability may require reformulating the problem, e.q., piecewise-linear
minimization or {,.,-norm approximation via LP
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Logarithmic barrier

reformulation of ([J) via indicator function:

minimize  fo(z) + 32,2, I-(fi(2))

subject to Az =0b

where I_(u) =0 if u <0, I_(u) = oo otherwise (indicator function of R_)

approximation via logarithmic barrier

minimize  fo(x) — (1/t) > ;2 log(— fi(x))

subject to Ax =1b

e an equality constrained problem

o fort >0, —(1/t)log(—wu) is a smooth
approximation of 1_

e approximation improves as t — o0

23 92 1 0
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logarithmic barrier function

¢(x) = - Zlog(—fz-(w)), dom ¢ = {z | fi(z) <0,..., fm(z) <0}

e convex (follows from composition rules)

e twice continuously differentiable, with derivatives

Vo) = Y- fj(w)wz-(:c)
Vola) = 3 V@A + Y V)
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Central path

e for t > 0, define z*(¢) as the solution of

minimize  tfo(z) + ¢(x)
subject to Az =0b

(for now, assume x*(t) exists and is unique for each t > 0)

e central path is {z*(¢) | t > 0}

example: central path for an LP

minimize ¢z

subject to alx <b;, i=1,...,6

hyperplane ¢!z = c¢t'z*(t) is tangent to level
curve of ¢ through z*(t)
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Dual points on central path

x = x*(t) if there exists a w such that

Vfi(x)+ Atw =0, Ax =0

tV fo(z) + Z — fj(w)

e therefore, £*(t) minimizes the Lagrangian
Lz, A (1), v (1) = fo(x) + ) N(1) f(x) + v* ()T (Az — b)
i=1

where we define \¥(¢) = 1/(—tf;(z*(t)) and v*(t) = w/t

e this confirms the intuitive idea that fy(z*(t)) — p* if t — oo:

p* > g\ (1), v*(t))
= L(z"(t), \*(t), v*(t))

= Jo(z*(t)) —m/t
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Interpretation via KKT conditions

x=x*(t), A\ = \*(t), v = v*(t) satisfy

1. primal constraints: f;(x) <0,7=1,...,m, Az =b

2. dual constraints: A > 0

3. approximate complementary slackness: —\; f;(x) =1/t,i=1,...

4. gradient of Lagrangian with respect to x vanishes:

difference with KKT is that condition 3 replaces \; f;(z) = 0
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Force field interpretation

centering problem (for problem with no equality constraints)

minimize tfo(x) — Y.~ log(—fi(z))

force field interpretation

e tfo(x) is potential of force field Fy(z) = —tV fo(x)
e —log(—fi(x)) is potential of force field F;(z) = (1/f;(x))V fi(x)

the forces balance at x*(¢):
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example
T

minimize c'x
subject to asz <b;, 1=1,...,m
e objective force field is constant: Fy(z) = —tc

e constraint force field decays as inverse distance to constraint hyperplane:

i IO P—
r 2 = dist(z, H;)

7

- Y
b; —a; x

where H; = {z | al'z = b;}

—3c
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Barrier method

given strictly feasible z, t := ¢(®) > 0, ;> 1, tolerance € > 0.
repeat

1. Centering step. Compute z*(t) by minimizing t fo + ¢, subject to Az = b.
2. Update. x := x*(t).

3. Stopping criterion. quit if m/t < e.

4. Increaset. t := ut.

e terminates with fy(x) — p* < € (stopping criterion follows from
fo(z*(t)) — p* < m/t)

e centering usually done using Newton's method, starting at current x

e choice of 1 involves a trade-off: large 1 means fewer outer iterations, more
inner (Newton) iterations; typical values: = 10-20

e several heuristics for choice of t(0)
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Convergence analysis

number of outer (centering) iterations: exactly

[log(m/ (etm))w

log p

plus the initial centering step (to compute :U*(t((’)))

centering problem
minimize tfyo(x) + ¢(x)

see convergence analysis of Newton's method

e tfy+ ¢ must have closed sublevel sets for t > £(0)
e classical analysis requires strong convexity, Lipschitz condition

e analysis via self-concordance requires self-concordance of ¢ fy + ¢
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Examples

inequality form LP (m = 100 inequalities, n = 50 variables)

102 140¢
v 1207
10° S
= ‘5 1007
> 5
21072 = 80
o) c
o 60f :
S 194 E
é 401 '
10760 pu=>50 u=150  p=2 20/ f
I I I I O I I I I I I I I I
0 20 40 60 80 0 40 80 120 160 200
Newton iterations w

e starts with = on central path (¢{?) = 1, duality gap 100)
e terminates when ¢t = 10°% (gap 107°)
e centering uses Newton’'s method with backtracking

e total number of Newton iterations not very sensitive for 1 > 10
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geometric program (m = 100 inequalities and n = 50 variables)

minimize log 22:1 eXp(CLOTkZC + bOk:))

subject to log 22:1 exp(a;,x + bzk)) <0, 71=1,....m

duality gap

0 20 40 60 &0 100 120
Newton iterations
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family of standard LPs (A € R™**™)

minimize ¢!z

subjectto Ax=0b, x>0

m = 10, ...,1000; for each m, solve 100 randomly generated instances

350

wn

[

.0

=

{©

2

[

O

+

<

()

=
155 ‘ ‘

10t 102 103

m

number of iterations grows very slowly as m ranges over a 100 : 1 ratio
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Feasibility and phase | methods

feasibility problem: find x such that
filx) <0, i=1,...,m, Az =0 (2)

phase |: computes strictly feasible starting point for barrier method

basic phase | method

minimize (over x, s) s
subject to file)<s, i=1,...,m (3)
b

e if z, s feasible, with s < 0, then z is strictly feasible for ([2)
e if optimal value p* of (3) is positive, then problem ([2) is infeasible

e if p* =0 and attained, then problem (i) is feasible (but not strictly);
if p* = 0 and not attained, then problem (2) is infeasible
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sum of infeasibilities phase | method
minimize 175
subjectto s> 0, fi(x)<s;, i=1,....,m
Ax = b

for infeasible problems, produces a solution that satisfies many more inequalities
than basic phase | method

example (infeasible set of 100 linear inequalities in 50 variables)

60 ‘ ‘ ‘ ‘ 60
5 40 5 40
0 0
£ £
c 20t < 20r
0 IH‘H%M mmmmm O 0 e A A HH I e e O

left: basic phase | solution; satisfies 39 inequalities
right: sum of infeasibilities phase | solution; satisfies 79 solutions
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example: family of linear inequalities Ax < b+ vAb
e data chosen to be strictly feasible for v > 0, infeasible for v < 0

e use basic phase I, terminate when s < 0 or dual objective is positive

v 100 3
g |
80 Infeasible Feasible
o i
.4:) @
-
o
*g |
o 20r !
= |
O . | .
-1 —0.5 0 0.5 1
Y
0 n 100}
[ [
o o
] ‘= 80
o ©
p= 2 60/
o S 40
S S
o 201 o 20
= =
03 =2 —4 6 0% —4 ) 0
—10 —10 ~ —10 —10 10 10 ~ 10 10

number of iterations roughly proportional to log(1/|v|)
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Complexity analysis via self-concordance

same assumptions as on page [135], plus:

e sublevel sets (of fj, on the feasible set) are bounded

e 1fo+ ¢ is self-concordant with closed sublevel sets

second condition

e holds for LP, QP, QCQP

e may require reformulating the problem, e.g.,

minimize ) ._, z;logx; — minimize ) ., z;logx;
subjectto Fx <Xg subjectto Fx <g, x>0

e needed for complexity analysis; barrier method works even when
self-concordance assumption does not apply
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Newton iterations per centering step: from self-concordance theory

pt fo(z) + ¢(x) — pt fo(z™) — p(z™)

#Newton iterations < +c
Y

e bound on effort of computing x+ = x*(ut) starting at = = 2*(¢)
e -, c are constants (depend only on Newton algorithm parameters)

e from duality (with A\ = A\*(¢), v = v*(t)):
ptfo(z) + ¢(x) — ptfo(z™) — ¢(a™)

= ptfo(x) — ptfo(x +Zlog —ptXifi(x™)) — mlog

< ptfo(z) — ptfola utZA fi(a™) —m —mlogu

< ptfo(z) — ptg(Av) —m — mlogu
= m(u—1—logu)
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total number of Newton iterations (excluding first centering step)

#Newton iterations < N = [

log(ql/g(io)ﬁ))w (m(ﬂ - 17_ log ) c)

510%

4104
figure shows N for typical values of v, ¢,

310%|

o m = 100,

1104

1 1.1 1.2
U

e confirms trade-off in choice of u

e in practice, #iterations is in the tens; not very sensitive for ;> 10
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polynomial-time complexity of barrier method

o foru=1+1/\/m:

S )

€

e number of Newton iterations for fixed gap reduction is O(y/m)

e multiply with cost of one Newton iteration (a polynomial function of problem
dimensions), to get bound on number of flops

this choice of 1 optimizes worst-case complexity; in practice we choose i fixed
(n=10,...,20)

VNU June 12-17 155



Barrier method

given strictly feasible x, t := t0) > 0 1> 1, tolerance € > 0.

repeat

1. Centering step. Compute z*(t) by minimizing t fo + ¢, subject to Az = b.
2. Update. x := x*(t).

3. Stopping criterion. quit if (D>_.0;)/t <e.

4. Increaset. t := ut.

e only difference is duality gap m/t on central path is replaced by > . 0;/t

e number of outer iterations:

log (3=, 0:)/(et'))
log p
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