Vietnam National University - Ho Chi Minh

Optimization, Machine Learning and Kernel Methods.

Introduction to the course

Marco Cuturi - Princeton University
Some preliminary information

- Course is 5 days long
 - Saturday 12/06 7:30AM to 12:30AM room I.23
 - Monday 14/06 1:30PM to 6:30 room I.23
 - Tuesday 15/06 7:30-12:30
 - Wed 16/06 7:30-12:30
 - Thu 17/06 7:30-12:30

- Evaluation: currently speaking with TA’s.
Some preliminary information

- **email**: mcuturi@princeton.edu
 Webpage: www.princeton.edu/~mcuturi

- Research interests: statistical learning, kernel methods, time-series, finance...

- My current job: Lecturer @ Princeton University ORFE dept.

- My next job (from 09/2010): Associate Prof. @ Kyoto University Graduate School of Informatics,
A master or PhD at Kyoto University?

• Want to go abroad for a Master or PhD in CS? why not Kyoto University.
 ○ Check http://www.g30.i.kyoto-u.ac.jp/en
 ○ Google KU profile

• NEW: full curriculum in english.

• Monbukagakusho grants ≈ 1.500 USD/month, no tuition fees.

• Deadline to join in October is very soon: July 5th.

• Another enrollment in February 2011, maybe easier.

• Please mention this to your friends in 3rd year, and ask me if interested.
The course

Three blocks in this course

- **Optimization** mathematical programming
- **Machine Learning** statistics, regression, classification
- **Kernel Methods** splines, reproducing kernel Hilbert spaces

Objective: cover theoretical, computational and practical aspects to build **computer programs** that can **learn** from databases
The big picture
Some intuitions on machine learning

- Imagine you have seen this movie:

- A friend comes to you and asks you:

 I feel like going to the movies tonight, do you think I will like this movie?

- How would you build your answer?
Some intuitions on machine learning

Machine learning helps industries build such answers automatically

• Imagine you are a DVD rental company.
• It is part of your business to recommend good movies to your customers.
• large scale task: for 1,000’s or 1,000,000’s of customers every day!
• Still the same question: would you recommend Ironman to customer AD13242?
Some intuitions on machine learning

- A computer program **also needs side information**

- For instance:
 - age & background of the user → Check his inscription form.
 - Better! a few examples of movies AD13242 has seen, with his **ratings**
 - Lord of the rings I (++++), Star Wars I (++)
 - Shrek 2 (-) etc..

- How can we decide if we should recommend *Ironman* to AD13242?
A more serious problem

• Given the DNA profile of a patient...

Can we answer (approximately) the questions:

○ What is this patient’s cancer risk in the next years?
○ What treatments can be effective for this patient?
Very fast progress in last years, from theory to practice

You can do a websearch on mammaprint or 23andme
Not only biology or movies.. richly structured data is everywhere

Biology : DNA chips, complex biological pathways.
Medicine : scans, 24/24 measurements of patients.
Business : commercial transactions online and offline.
Search engines : audio, video and textual contents.
Finance : electronic markets, quotes and transactions tick by tick.
Physical interactions : highway networks, mobile phones, GPS localization.
Sociological and physical interactions : social networks on internet, surveillance.

\textit{etc.}

\[\downarrow\]

\textbf{Data acquisition is cheap} \neq \textbf{Data analysis is more difficult}

\[\downarrow\]

Need for \textbf{data-driven algorithms} to \textbf{fill the gap} between \textbf{storing complex data} and \textbf{understanding it}
Build decision functions

- In many situations, we want to answer a question:

 Given a certain situation summarized by x, what can happen/should we do?

- In mathematical terms, we want to build a function:

 $$f : \mathcal{X} \rightarrow \mathcal{Y}$$
 $$x \mapsto f(x)$$

 - \mathcal{X} could be: images, texts, movies, etc.
 - \mathcal{Y} could be: "yes/no", real numbers, sentences etc.

 Our goal: build a computer program that outputs a useful $f(x)$.
Build decision functions

A few examples in the industry

- Ranking answers to a problem,
- Learning jointly different related tasks,
- Learn maps between structured data, \textit{e.g.} translation
- Build interaction maps, \textit{e.g.} for proteins,
- Learn in online settings where data is provided sequentially
- Learn with very large databases: shopping.
- \textit{etc.}
What we will not do

- 100% Man-made, rule-based decision trees.

- **Advantages:** sometimes expertise available, just need to *rationalize* it. *etc.*

- **Disadvantages:** difficult to *replicate*, unadapted for *large* systems and *new problems* (DNA) where no expertise exists by definition!
What we will do:

- Use data collected in databases as the main ingredient to build f.

- Build architectures where machines can learn from these databases.
The kind of data we will handle

- **Random**
 - Unlike deterministic systems, we assume *randomness*.
 - *Future* requests are **not known**. Some are more likely.

- **Structured, complex**
 - strings, texts and sequences,
 - images, audio and video feeds,
 - graphs, interaction networks and 3D structures
Statistical Inference

Definition

Statistical inference is the process of **making conclusions** using data that is subject to random variation, for example, observational errors or sampling variation.

- **Statistical inference** = Take decisions in a random environment based on past observations.

- **Statistical**: probabilistic view of the world.

- **Inference**: purpose to understand and predict better.
Ingredients to pick a good \(f \)

- A set of candidates \(\mathcal{F} \).

- A way to use the database (past observations)
 - \textbf{Data-dependent} criterion \(C_{\text{data}} \) to select \(f \).
 - Usually given a function \(g \), \(C_{\text{data}}(g) \) big if \(g \) not accurate on the data.

- A method to find an \textbf{optimal} candidate in \(\mathcal{F} \).

\[
 f = \arg\min_{g \in \mathcal{F}} C_{\text{data}}(g).
\]
Outline of the course

- **Optimization** (argmin).
 - Convexity & linear programming (6 hours)
 - Convex programming (4 hours)

- **Statistical Modeling** to define (C_{data}) (4 hours)
 - elementary probability,
 - study of different situations and different C.

- **Kernel Methods**, a possible choice for \mathcal{F} (6 hours)