Pattern Recognition Advanced

The Support Vector Machine Introduction to Kernel Methods

mcuturi@i.kyoto-u.ac.jp

Supervised Learning

> Many observations of the same data type, with labels

- we consider a database $\left\{\mathbf{x}_{1}, \cdots, \mathbf{x}_{N}\right\}$,
- each datapoint \mathbf{x}_{j} is represented as a vector of features $\mathbf{x}_{j}=\left[\begin{array}{c}x_{1, j} \\ x_{2, j} \\ \vdots \\ x_{d, j}\end{array}\right]$
- To each observation is associated a label $y_{j} \ldots$
- If $y_{j} \in \mathbb{R}$, we have a regression problem.
- If $y_{j} \in \mathcal{S}$ where \mathcal{S} is a finite set, multiclass classification.
- If \mathcal{S} only has two elements, binary classification.

Supervised Learning: Binary Classification

Examples of Binary Classes

- Using elementary measurements, guess if someone has or not a disease that is
- difficult to detect at an early stage
- difficult to measure directly (fetus)
- Classify chemical compounds into toxic / nontoxic
- Classify a scanned piece of luggage as suspicious/not suspicious
- Classify body tumor as begign/malign to detect cancer
- Detect whether an image's primary content is people or any other object
- etc.

Data

- Data: instances $\mathbf{x}_{1}, \mathbf{x}_{2}, \mathbf{x}_{3}, \cdots, \mathbf{x}_{N}$.
- To infer a "yes/no" rule, we need the corresponding answer for each vector.
- We consider thus a set of pairs of (vector,bit)

$$
\text { "training set" }=\left\{\left(\mathbf{x}_{j}=\left[\begin{array}{c}
x_{1, j} \\
x_{2, j} \\
\vdots \\
x_{d, j}
\end{array}\right] \in \mathbb{R}^{d}, \mathbf{y}_{j} \in\{0,1\}\right)_{j=1 . . N}\right\}
$$

- For illustration purposes only we will consider vectors in the plane, $d=2$.
- The ideas for $d \gg 3$ are conceptually the same.

Binary Classification Separation Surfaces for Vectors

What is a classification rule?

Binary Classification Separation Surfaces for Vectors

Classification rule $=$ a partition of \mathbb{R}^{d} into two sets

Binary Classification Separation Surfaces for Vectors

This partition is encoded as the level set of a function on \mathbb{R}^{d}

Binary Classification Separation Surfaces for Vectors

Namely, $\left\{\mathbf{x} \in \mathbb{R}^{d} \mid f(\mathbf{x})>0\right\}$ and $\left\{\mathbf{x} \in \mathbb{R}^{d} \mid f(\mathbf{x}) \leq 0\right\}$

Classification Separation Surfaces for Vectors

What kind of function? any smooth function works. For instance, a curved line

Classification Separation Surfaces for Vectors

Even more simple: using affine functions that define halfspaces.

Linear Classifiers

- lines (hyperplanes when $d>2$) provide the simplest type of classifiers.
- A hyperplane $H_{\mathrm{c}, b}$ is a set in \mathbb{R}^{d} defined by
- a normal vector $\mathbf{c} \in \mathbb{R}^{d}$
- a constant $b \in \mathbb{R}$. as

$$
H_{\mathbf{c}, b}=\left\{\mathbf{x} \in \mathbb{R}^{d} \mid \mathbf{c}^{T} \mathbf{x}=b\right\}
$$

- Letting b vary we can "slide" the hyperplane across \mathbb{R}^{d}

Linear Classifiers

- Exactly like lines in the plane, hyperplanes divide \mathbb{R}^{d} into two halfspaces,

$$
\left\{\mathbf{x} \in \mathbb{R}^{d} \mid \mathbf{c}^{T} \mathbf{x}<b\right\} \cup\left\{\mathbf{x} \in \mathbb{R}^{d} \mid \mathbf{c}^{T} \mathbf{x} \geq b\right\}=\mathbb{R}^{d}
$$

- Linear classifiers answer "yes" or "no" given \mathbf{x} and pre-defined \mathbf{c} and b.

how can we choose a "good" ($\left.\mathbf{c}^{\star}, b^{\star}\right)$ given the training set?

Linear Classifiers

- This specific question,

$$
\text { "training set" }\left\{\left(\mathbf{x}_{i} \in \mathbb{R}^{d}, \mathbf{y}_{i} \in\{0,1\}\right)_{i=1 . . N}\right\} \stackrel{? ? ? ?}{\Longrightarrow} \text { "best" } \mathbf{c}^{\star}, b^{\star}
$$

has different answers. A (non-exhaustive!) selection of techniques:

- Linear Discriminant Analysis (or Fisher's Linear Discriminant);
- Logistic regression maximum likelihood estimation;
- Perceptron, a one-layer neural network;
- Support Vector Machine, the result of a convex program.

Linear Classifiers

- This specific question,

$$
\text { "training set" }\left\{\left(\mathbf{x}_{i} \in \mathbb{R}^{d}, \mathbf{y}_{i} \in\{0,1\}\right)_{i=1 . . N}\right\} \stackrel{? ? ? ?}{\Longrightarrow} \text { "best" } \mathbf{c}^{\star}, b^{\star}
$$

has different answers. A (non-exhaustive!) selection of techniques:

- Linear Discriminant Analysis (or Fisher's Linear Discriminant);
- Logistic regression maximum likelihood estimation;
- Perceptron, a one-layer neural network;
- Support Vector Machine, the result of a convex program.
- etc.

> Which one should I use?

Linear Classifiers

Which one should I use?

Too many criteria to answer that question.

Computational speed. Interpretability of the results. Batch or online training.
Theoretical guarantees and learning rates. Applicability of assumptions underpinning the technique to your dataset. Source code availability. Parallel?. Size (in bits) of the solution. Reproducibility of results \& Numerical stability...etc.

Choosing the adequate tool for a specific dataset is where your added value as a researcher in pattern recognition lies.

Classification Separation Surfaces for Vectors

Given two sets of points...

Classification Separation Surfaces for Vectors

It is sometimes possible to separate them perfectly

Classification Separation Surfaces for Vectors

Each choice might look equivalently good on the training set, but it will have obvious impact on new points

Classification Separation Surfaces for Vectors

Linear classifier, some degrees of freedom

Linear classifier, some degrees of freedom

Linear classifier, some degrees of freedom

Specially close to the border of the classifier

Linear classifier, some degrees of freedom

Linear classifier, some degrees of freedom

For each different technique, different results, different performance.

Support Vector Machines The linearly-separable case

Google
Scholar

A criterion to select a linear classifier: the margin ?

A criterion to select a linear classifier: the margin ?

A criterion to select a linear classifier: the margin ?

A criterion to select a linear classifier: the margin ?

A criterion to select a linear classifier: the margin ?

Largest Margin Linear Classifier ?

Support Vectors with Large Margin

In Mathematical Equations

- The training set is a finite set of n data/class pairs:

$$
\mathcal{T}=\left\{\left(\mathbf{x}_{1}, \mathbf{y}_{1}\right), \ldots,\left(\mathbf{x}_{N}, \mathbf{y}_{N}\right)\right\}
$$

where $\mathbf{x}_{i} \in \mathbb{R}^{d}$ and $\mathbf{y}_{i} \in\{-1,1\}$.

- We assume (for the moment) that the data are linearly separable, i.e., that there exists $(\mathbf{w}, b) \in \mathbb{R}^{d} \times \mathbb{R}$ such that:

$$
\begin{cases}\mathbf{w}^{T} \mathbf{x}_{i}+b>0 & \text { if } \mathbf{y}_{i}=1, \\ \mathbf{w}^{T} \mathbf{x}_{i}+b<0 & \text { if } \mathbf{y}_{i}=-1\end{cases}
$$

How to find the largest separating hyperplane?

For the linear classifier $f(\mathbf{x})=\mathbf{w}^{T} \mathbf{x}+b$ consider the interstice defined by the hyperplanes

- $f(\mathbf{x})=\mathbf{w}^{T} \mathbf{x}+b=+1$
- $f(\mathbf{x})=\mathbf{w}^{T} \mathbf{x}+b=-1$

The margin is $2 /\|\mathbf{w}\|$

- Indeed, the points \mathbf{x}_{1} and \mathbf{x}_{2} satisfy:

$$
\left\{\begin{array}{l}
\mathbf{w}^{T} \mathbf{x}_{1}+b=0 \\
\mathbf{w}^{T} \mathbf{x}_{2}+b=1
\end{array}\right.
$$

- By subtracting we get $\mathbf{w}^{T}\left(\mathbf{x}_{2}-\mathbf{x}_{1}\right)=1$, and therefore:

$$
\gamma=2\left\|\mathbf{x}_{2}-\mathbf{x}_{1}\right\|=\frac{2}{\|\mathbf{w}\|}
$$

where γ is the margin.

$$
\text { Large margin } \gamma \Leftrightarrow \text { Small }\|\mathbf{w}\| \Leftrightarrow \text { Small }\|\mathbf{w}\|^{2}
$$

All training points should be on the good side

- For positive examples ($y_{i}=1$) this means:

$$
\mathbf{w}^{T} \mathbf{x}_{i}+b \geq 1
$$

- For negative examples ($y_{i}=-1$) this means:

$$
\mathbf{w}^{T} \mathbf{x}_{i}+b \leq-1
$$

- in both cases:

$$
\forall i=1, \ldots, n, \quad \mathbf{y}_{i}\left(\mathbf{w}^{T} \mathbf{x}_{i}+b\right) \geq 1
$$

Finding the optimal hyperplane

- Finding the optimal hyperplane is equivalent to finding (\mathbf{w}, b) which minimize:

$$
\|\mathbf{w}\|^{2}
$$

under the constraints:

$$
\forall i=1, \ldots, n, \quad \mathbf{y}_{i}\left(\mathbf{w}^{T} \mathbf{x}_{i}+b\right)-1 \geq 0 .
$$

This is a classical quadratic program on \mathbb{R}^{d+1} linear constraints - quadratic objective

Lagrangian

- In order to minimize:

$$
\frac{1}{2}\|\mathbf{w}\|^{2}
$$

under the constraints:

$$
\forall i=1, \ldots, n, \quad y_{i}\left(\mathbf{w}^{T} \mathbf{x}_{i}+b\right)-1 \geq 0
$$

- introduce one dual variable α_{i} for each constraint,
- one constraint for each training point.
- the Lagrangian is, for $\alpha \succeq 0$ (that is for each $\alpha_{i} \geq 0$)

$$
L(\mathbf{w}, b, \alpha)=\frac{1}{2}\|\mathbf{w}\|^{2}-\sum_{i=1}^{n} \alpha_{i}\left(y_{i}\left(\mathbf{w}^{T} \mathbf{x}_{i}+b\right)-1\right) .
$$

The Lagrange dual function

$$
g(\alpha)=\inf _{\mathbf{w} \in \mathbb{R}^{d}, b \in \mathbb{R}}\left\{\frac{1}{2}\|\mathbf{w}\|^{2}-\sum_{i=1}^{n} \alpha_{i}\left(y_{i}\left(\mathbf{w}^{T} \mathbf{x}_{i}+b\right)-1\right)\right\}
$$

the saddle point conditions give us that at the minimum in \mathbf{w} and b

$$
\begin{aligned}
\mathbf{w} & =\sum_{i=1}^{n} \alpha_{i} \mathbf{y}_{i} \mathbf{x}_{i}, \quad(\text { derivating w.r.t } \mathbf{w}) \quad(*) \\
0 & =\sum_{i=1}^{n} \alpha_{i} \mathbf{y}_{i}, \quad(\text { derivating w.r.t } b) \quad(* *)
\end{aligned}
$$

substituting $(*)$ in g, and using $(* *)$ as a constraint, get the dual function $g(\alpha)$.

- To solve the dual problem, maximize g w.r.t. α.

Dual optimum

The dual problem is thus

$$
\begin{array}{cc}
\text { maximize } & g(\alpha)=\sum_{i=1}^{n} \alpha_{i}-\frac{1}{2} \sum_{i, j=1}^{n} \alpha_{i} \alpha_{j} y_{i} y_{j} \mathbf{x}_{i}^{T} \mathbf{x}_{j} \\
\text { such that } & \alpha \succeq 0, \sum_{i=1}^{n} \alpha_{i} \mathbf{y}_{i}=0
\end{array}
$$

This is a quadratic program in \mathbb{R}^{n}, with box constraints.
α^{\star} can be computed using optimization software (e.g. built-in matlab function)

Dual optimum

The dual problem is thus

$$
\begin{array}{lc}
\operatorname{maximize} & g(\alpha)=\sum_{i=1}^{n} \alpha_{i}-\frac{1}{2} \sum_{i, j=1}^{n} \alpha_{i} \alpha_{j} y_{i} y_{j} \mathbf{x}_{i}^{T} \mathbf{x}_{j} \\
\text { such that } & \alpha \succeq 0, \sum_{i=1}^{n} \alpha_{i} \mathbf{y}_{i}=0 .
\end{array}
$$

This is a quadratic program in \mathbb{R}^{n}, with box constraints.
α^{\star} can be computed using optimization software (e.g. built-in matlab function)

All SVM toolboxes available can be interpreted as customized solvers that handle efficiently this particular problem.

Dual optimum

The dual problem is thus

$$
\begin{array}{cc}
\operatorname{maximize} & g(\alpha)=\sum_{i=1}^{n} \alpha_{i}-\frac{1}{2} \sum_{i, j=1}^{n} \alpha_{i} \alpha_{j} y_{i} y_{j} \mathbf{x}_{i}^{T} \mathbf{x}_{j} \\
\text { such that } & \alpha \succeq 0, \sum_{i=1}^{n} \alpha_{i} \mathbf{y}_{i}=0 .
\end{array}
$$

This is a quadratic program in \mathbb{R}^{n}, with box constraints. α^{\star} can be computed using optimization software (e.g. built-in matlab function)

Google "svm toolbox"

About 12,900 results (0.14 seconds)

Recovering the optimal hyperplane

- With α^{\star}, we recover $\left(\mathbf{w}_{\star}^{T}, b_{\star}\right)$ corresponding to the optimal hyperplane.
- \mathbf{w}_{\star}^{T} is given by $\mathbf{w}_{\star}^{T}=\sum_{i=1}^{n} y_{i} \alpha_{i}^{\star} \mathbf{x}_{i}^{T}$,
- b_{\star} is given by the conditions on the support vectors $\alpha_{i}>0, \mathbf{y}_{i}\left(\mathbf{w}^{T} \mathbf{x}_{i}+b\right)=1$,

$$
b_{\star}=-\frac{1}{2}\left(\min _{\mathbf{y}_{i}=1, \alpha_{i}>0}\left(\mathbf{w}_{\star}^{T} \mathbf{x}_{i}\right)+\max _{\mathbf{y}_{i}=-1, \alpha_{i}>0}\left(\mathbf{w}_{\star}^{T} \mathbf{x}_{i}\right)\right)
$$

- the decision function is therefore:

$$
\begin{aligned}
f^{\star}(\mathbf{x}) & =\mathbf{w}_{\star}^{T} \mathbf{x}+b_{\star} \\
& =\left(\sum_{i=1}^{n} y_{i} \alpha_{i}^{\star} \mathbf{x}_{i}^{T}\right) \mathbf{x}+b_{\star} .
\end{aligned}
$$

- Here the dual solution gives us directly the primal solution.

From optimization theory...

Studying the relationship between primal/dual problems is an important topic in optimization theory.
As a consequence, we can say many things about the optimal α^{\star} and the constraints of the original problem.

- Strong duality : primal and dual problems have the same optimum.
- Karush-Kuhn-Tucker Conditions give us that for every $i \leq n$

$$
\alpha_{i}^{\star}\left(\mathbf{y}_{i}\left(\mathbf{w}_{\star}^{T} \mathbf{x}_{i}+b_{\star}\right)-1\right)=0 .
$$

From optimization theory...

Studying the relationship between primal/dual problems is an important topic in optimization theory.
As a consequence, we can say many things about the optimal α^{\star} and the constraints of the original problem.

- Strong duality : primal and dual problems have the same optimum.
- Karush-Kuhn-Tucker Conditions give us that for every $i \leq n$

$$
\underbrace{\alpha_{i}^{\star}}_{\text {multiplier } i} \times \underbrace{\left(\mathbf{y}_{i}\left(\mathbf{w}_{\star}^{T} \mathbf{x}_{i}+b_{\star}\right)-1\right)}_{\text {constraint } i}=0 .
$$

- Hence, either

$$
\alpha_{i}^{\star}=0 \text { OR } \mathrm{y}_{i}\left(\mathrm{w}_{\star}^{T} \mathrm{x}_{i}+b_{\star}\right)=1
$$

- $\alpha_{i}^{\star} \neq 0$ only for points that lie on the tube (support vectors!).

Visualizing Support Vectors

$\alpha_{i}^{\star} \neq 0$ only for points that lie on the tube (support vectors!).

Another interpretation: Convex Hulls

go back to 2 sets of points that are linearly separable

Another interpretation: Convex Hulls

Linearly separable $=$ convex hulls do not intersect

Another interpretation: Convex Hulls

Find two closest points, one in each convex hull

Another interpretation: Convex Hulls

The SVM = bisection of that segment

Another interpretation: Convex Hulls

support vectors $=$ extreme points of the faces on which the two points lie

The non-linearly separable case

(when convex hulls intersect)

What happens when the data is not linearly separable?

What happens when the data is not linearly separable?

What happens when the data is not linearly separable?

What happens when the data is not linearly separable?

Soft-margin SVM ?

- Find a trade-off between large margin and few errors.
- Mathematically:

$$
\min _{f}\left\{\frac{1}{\operatorname{margin}(f)}+C \times \operatorname{errors}(f)\right\}
$$

- C is a parameter

Soft-margin SVM formulation ?

- The margin of a labeled point (\mathbf{x}, \mathbf{y}) is

$$
\operatorname{margin}(\mathbf{x}, \mathbf{y})=\mathbf{y}\left(\mathbf{w}^{T} \mathbf{x}+b\right)
$$

- The error is
- 0 if $\operatorname{margin}(\mathbf{x}, \mathbf{y})>1$,
- $1-\operatorname{margin}(\mathbf{x}, \mathbf{y})$ otherwise.
- The soft margin SVM solves:

$$
\min _{\mathbf{w}, b}\left\{\|\mathbf{w}\|^{2}+C \sum_{i=1}^{n} \max \left\{0,1-\mathbf{y}_{i}\left(\mathbf{w}^{T} \mathbf{x}_{i}+b\right)\right\}\right.
$$

- $c(u, y)=\max \{0,1-y u\}$ is known as the hinge loss.
- $c\left(\mathbf{w}^{T} \mathbf{x}_{i}+b, \mathbf{y}_{i}\right)$ associates a mistake cost to the decision \mathbf{w}, b for example \mathbf{x}_{i}.

Dual formulation of soft-margin SVM

- The soft margin SVM program

$$
\min _{\mathbf{w}, b}\left\{\|\mathbf{w}\|^{2}+C \sum_{i=1}^{n} \max \left\{0,1-\mathbf{y}_{i}\left(\mathbf{w}^{T} \mathbf{x}_{i}+b\right)\right\}\right.
$$

can be rewritten as

$$
\begin{array}{lc}
\text { minimize } & \|\mathbf{w}\|^{2}+C \sum_{i=1}^{n} \xi_{i} \\
\text { such that } & \mathbf{y}_{i}\left(\mathbf{w}^{T} \mathbf{x}_{i}+b\right) \geq 1-\xi_{i}
\end{array}
$$

- In that case the dual function

$$
g(\alpha)=\sum_{i=1}^{n} \alpha_{i}-\frac{1}{2} \sum_{i, j=1}^{n} \alpha_{i} \alpha_{j} \mathbf{y}_{i} \mathbf{y}_{j} \mathbf{x}_{i}^{T} \mathbf{x}_{j},
$$

which is finite under the constraints:

$$
\left\{\begin{array}{l}
0 \leq \alpha_{i} \leq C, \quad \text { for } i=1, \ldots, n \\
\sum_{i=1}^{n} \alpha_{i} \mathbf{y}_{i}=0
\end{array}\right.
$$

Interpretation: bounded and unbounded support vectors

What about the convex hull analogy?

- Remember the separable case

- Here we consider the case where the two sets are not linearly separable, i.e. their convex hulls intersect.

$$
\text { Class } \mathcal{B} \quad \text { Class } \mathcal{A}
$$

What about the convex hull analogy?

Definition 1. Given a set of n points \mathcal{A}, and $0 \leq C \leq 1$, the set of finite combinations

$$
\sum_{i=1}^{n} \lambda_{i} \mathbf{x}_{i}, 1 \leq \lambda_{i} \leq C, \sum_{i=1}^{n} \lambda_{i}=1,
$$

is the (C) reduced convex hull of \mathcal{A}

- Using $C=1 / 2$, the reduced convex hulls of \mathcal{A} and \mathcal{B}, Class $\mathcal{B} \quad$ Class \mathcal{A}

- Soft-SVM with $C=$ closest two points of C-reduced convex hulls.

Kernels

Kernel trick for SVM's

- use a mapping ϕ from \mathcal{X} to a feature space,
- which corresponds to the kernel k :

$$
\forall \mathbf{x}, \mathbf{x}^{\prime} \in \mathcal{X}, \quad k\left(\mathbf{x}, \mathbf{x}^{\prime}\right)=\left\langle\phi(\mathbf{x}), \phi\left(\mathbf{x}^{\prime}\right)\right\rangle
$$

- Example: if $\phi(\mathbf{x})=\phi\left(\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right]\right)=\left[\begin{array}{l}x_{1}^{2} \\ x_{2}^{2}\end{array}\right]$, then

$$
k\left(\mathbf{x}, \mathbf{x}^{\prime}\right)=\left\langle\phi(\mathbf{x}), \phi\left(\mathbf{x}^{\prime}\right)\right\rangle=\left(x_{1}\right)^{2}\left(x_{1}^{\prime}\right)^{2}+\left(x_{2}\right)^{2}\left(x_{2}^{\prime}\right)^{2}
$$

Training a SVM in the feature space

Replace each $\mathbf{x}^{T} \mathbf{x}^{\prime}$ in the SVM algorithm by $\left\langle\phi(\mathbf{x}), \phi\left(\mathbf{x}^{\prime}\right)\right\rangle=k\left(\mathbf{x}, \mathbf{x}^{\prime}\right)$

- Reminder: the dual problem is to maximize

$$
g(\alpha)=\sum_{i=1}^{n} \alpha_{i}-\frac{1}{2} \sum_{i, j=1}^{n} \alpha_{i} \alpha_{j} y_{i} y_{j} \boldsymbol{k}\left(\mathbf{x}_{i}, \mathbf{x}_{j}\right)
$$

under the constraints:

$$
\left\{\begin{array}{l}
0 \leq \alpha_{i} \leq C, \quad \text { for } i=1, \ldots, n \\
\sum_{i=1}^{n} \alpha_{i} \mathbf{y}_{i}=0
\end{array}\right.
$$

- The decision function becomes:

$$
\begin{align*}
f(\mathbf{x}) & =\langle\mathbf{w}, \phi(x)\rangle+b_{\star} \\
& =\sum_{i=1}^{n} y_{i} \alpha_{i} \boldsymbol{k}\left(\mathbf{x}_{i}, \mathbf{x}\right)+b_{\star} \tag{1}
\end{align*}
$$

The Kernel Trick ?

The explicit computation of $\phi(\mathbf{x})$ is not necessary. The kernel $k\left(\mathbf{x}, \mathbf{x}^{\prime}\right)$ is enough.

- the SVM optimization for α works implicitly in the feature space.
- the SVM is a kernel algorithm: only need to input K and y :

$$
\begin{array}{cl}
\text { maximize } & g(\alpha)=\alpha^{T} \mathbf{1}-\frac{1}{2} \alpha^{T}\left(\boldsymbol{K} \odot \mathbf{y y}^{T}\right) \alpha \\
\text { such that } & 0 \leq \alpha_{i} \leq C, \quad \text { for } i=1, \ldots, n \\
& \sum_{i=1}^{n} \alpha_{i} \mathbf{y}_{i}=0
\end{array}
$$

- K's positive definite \Leftrightarrow problem has an unique optimum
- the decision function is $f(\cdot)=\sum_{i=1}^{n} \alpha_{i} k\left(\mathbf{x}_{i}, \cdot\right)+b$.

Kernel example: polynomial kernel

- For $\mathbf{x}=\left(x_{1}, x_{2}\right)^{\top} \in \mathbb{R}^{2}$, let $\phi(\mathbf{x})=\left(x_{1}^{2}, \sqrt{2} x_{1} x_{2}, x_{2}^{2}\right) \in \mathbb{R}^{3}$:

$$
\begin{aligned}
\boldsymbol{K}\left(\mathbf{x}, \mathbf{x}^{\prime}\right) & =x_{1}^{2} x_{1}^{\prime 2}+2 x_{1} x_{2} x_{1}^{\prime} x_{2}^{\prime}+x_{2}^{2} x_{2}^{\prime 2} \\
& =\left\{x_{1} x_{1}^{\prime}+x_{2} x_{2}^{\prime}\right\}^{2} \\
& =\left\{\mathbf{x}^{T} \mathbf{x}^{\prime}\right\}^{2} .
\end{aligned}
$$

Kernels are Trojan Horses onto Linear Models

- With kernels, complex structures can enter the realm of linear models

What is a kernel

In the context of these lectures...

- A kernel k is a function

$$
\begin{array}{rccc}
k: \mathcal{X} \times \mathcal{X} & \longmapsto & \mathbb{R} \\
(\mathbf{x}, \mathbf{y}) & \longrightarrow & k(\mathbf{x}, \mathbf{y})
\end{array}
$$

- which compares two objects of a space \mathcal{X}, e.g...
- strings, texts and sequences,

- graphs, interaction networks and 3D structures

- whatever actually... time-series of graphs of images? graphs of texts?...

Fundamental properties of a kernel

symmetric

$$
k(\mathbf{x}, \mathbf{y})=k(\mathbf{y}, \mathbf{x}) .
$$

positive-(semi)definite
for any finite family of points $\mathbf{x}_{1}, \cdots, \mathbf{x}_{n}$ of \mathcal{X}, the matrix

$$
K=\left[\begin{array}{cccccc}
k\left(\mathbf{x}_{1}, \mathbf{x}_{1}\right) & k\left(\mathbf{x}_{1}, \mathbf{x}_{2}\right) & \cdots & k\left(\mathbf{x}_{1}, \mathbf{x}_{i}\right) & \cdots & k\left(\mathbf{x}_{1}, \mathbf{x}_{n}\right) \\
k\left(\mathbf{x}_{2}, \mathbf{x}_{1}\right) & k\left(\mathbf{x}_{2}, \mathbf{x}_{2}\right) & \cdots & k\left(\mathbf{x}_{2}, \mathbf{x}_{i}\right) & \cdots & k\left(\mathbf{x}_{2}, \mathbf{x}_{n}\right) \\
\vdots & \vdots & \ddots & \vdots & \vdots & \vdots \\
k\left(\mathbf{x}_{i}, \mathbf{x}_{1}\right) & k\left(\mathbf{x}_{i}, \mathbf{x}_{2}\right) & \cdots & k\left(\mathbf{x}_{i}, \mathbf{x}_{i}\right) & \cdots & k\left(\mathbf{x}_{2}, \mathbf{x}_{n}\right) \\
\vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\
k\left(\mathbf{x}_{n}, \mathbf{x}_{1}\right) & k\left(\mathbf{x}_{n}, \mathbf{x}_{2}\right) & \cdots & k\left(\mathbf{x}_{n}, \mathbf{x}_{i}\right) & \cdots & k\left(\mathbf{x}_{n}, \mathbf{x}_{n}\right)
\end{array}\right] \succeq 0
$$

is positive semidefinite (has a nonnegative spectrum).

$$
K \text { is often called the Gram matrix of }\left\{\mathbf{x}_{1}, \cdots, \mathbf{x}_{n}\right\} \text { using } k
$$

What can we do with a kernel?

The setting

- Very loose setting: a set of objects $\mathbf{x}_{1}, \cdots, \mathbf{x}_{n}$ of \mathcal{X}
- Sometimes additional information on these objects
- labels $\mathbf{y}_{i} \in\{-1,1\}$ or $\{1, \cdots, \#$ (classes) $\}$,
- scalar values $\mathbf{y}_{i} \in \mathbb{R}$,
- associated object $\mathbf{y}_{i} \in \mathcal{Y}$
- A kernel $k: \mathcal{X} \times \mathcal{X} \mapsto \mathbb{R}$.

The Gram matrix perspective

- Imagine a little task: you have read 100 novels so far.

- You would like to know whether you will enjoy reading a new novel.
- A few options:
- read the book...
- have friends read it for you, read reviews.
- try to guess, based on the novels you read, if you will like it

The Gram matrix perspective

> Two distinct approaches

- Define what features can characterize a book.
- Map each book in the library onto vectors

typically the x_{i} 's can describe...
\triangleright \# pages, language, year 1st published, country,
\triangleright coordinates of the main action, keyword counts,
\triangleright author's prizes, popularity, booksellers ranking
- Challenge: find a decision function using 100 ratings and features.

The Gram matrix perspective

- Define what makes two novels similar,
- Define a kernel k which quantifies novel similarities.
- Map the library onto a Gram matrix

- Challenge: find a decision function that takes this 100×100 matrix as an input.

The Gram matrix perspective

Given a new novel,

- with the features approach, the prediction can be rephrased as what are the features of this new book? what features have I found in the past that were good indicators of my taste?
- with the kernel approach, the prediction is rephrased as which novels this book is similar or dissimilar to? what pool of books did I find the most influentials to define my tastes accurately?
kernel methods only use kernel similarities, do not consider features.

Features can help define similarities, but never considered elsewhere.

The Gram matrix perspective

> in kernel methods, clear separation between the kernel...

and Convex optimization (thanks to psdness of K, more later) to output the α 's.

Kernel Trick

Given a dataset $\left\{x_{1}, \cdots, x_{N}\right\}$ and a new instance $x_{\text {new }}$

Many data analysis methods only depend on $x_{i}^{T} x_{j}$ and $x_{i}^{T} \boldsymbol{x}_{\text {new }}$

- Ridge regression
- Principal Component Analysis
- Linear Discriminant Analysis
- Canonical Correlation Analysis
- etc.

Replace these evaluations by $k\left(x_{i}, x_{j}\right)$ and $k\left(x_{i}, \boldsymbol{x}_{\text {new }}\right)$

- This will even work if the x_{i} 's are not in a dot-product space! (strings, graphs, images etc.)

