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Supervised Learning

Many observations of the same data type, with labels

• we consider a database {x1, · · · , xN},

• each datapoint xj is represented as a vector of features xj =







x1,j

x2,j
...

xd,j







• To each observation is associated a label yj...

◦ If yj ∈ R, we have a regression problem.
◦ If yj ∈ S where S is a finite set, multiclass classification.
◦ If S only has two elements, binary classification.
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Supervised Learning: Binary Classification

Examples of Binary Classes

• Using elementary measurements, guess if someone has or not a disease that is

◦ difficult to detect at an early stage
◦ difficult to measure directly (fetus)

• Classify chemical compounds into toxic / nontoxic

• Classify a scanned piece of luggage as suspicious/not suspicious

• Classify body tumor as begign/malign to detect cancer

• Detect whether an image’s primary content is people or any other object

• etc.
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Data

• Data: instances x1, x2, x3, · · · , xN .

• To infer a “yes/no” rule, we need the corresponding answer for each vector.

• We consider thus a set of pairs of (vector,bit)

“training set” =












xj =







x1,j

x2,j
...

xd,j






∈ R

d, yj ∈ {0, 1}







j=1..N







• For illustration purposes only we will consider vectors in the plane, d = 2.

• The ideas for d ≫ 3 are conceptually the same.
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Binary Classification Separation Surfaces for Vectors

What is a classification rule?
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Binary Classification Separation Surfaces for Vectors

Classification rule = a partition of Rd into two sets
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Binary Classification Separation Surfaces for Vectors

This partition is encoded as the level set of a function on R
d
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Binary Classification Separation Surfaces for Vectors

Namely, {x ∈ R
d|f(x) > 0} and {x ∈ R

d|f(x) ≤ 0}
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Classification Separation Surfaces for Vectors

What kind of function? any smooth function works. For instance, a curved line
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Classification Separation Surfaces for Vectors

Even more simple: using affine functions that define halfspaces.
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Linear Classifiers

• lines (hyperplanes when d > 2) provide the simplest type of classifiers.

• A hyperplane Hc,b is a set in R
d defined by

◦ a normal vector c ∈ R
d

◦ a constant b ∈ R. as

Hc,b = {x ∈ R
d | cTx = b}

• Letting b vary we can “slide” the hyperplane across Rd

c

Hc,0

Hc,b0
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Linear Classifiers

• Exactly like lines in the plane, hyperplanes divide R
d into two halfspaces,

{
x ∈ R

d | cTx< b
}
∪
{
x ∈ R

d | cTx≥ b
}
= R

d

• Linear classifiers answer “yes” or “no” given x and pre-defined c and b.

NO

YES

Hc,b

c

how can we choose a “good” (c⋆, b⋆) given the training set?
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Linear Classifiers

• This specific question,

“training set”
{(

xi ∈ R
d, yi ∈ {0, 1}

)

i=1..N

} ????
=⇒“best”c⋆, b⋆

has different answers. A (non-exhaustive!) selection of techniques:

• Linear Discriminant Analysis (or Fisher’s Linear Discriminant);

• Logistic regression maximum likelihood estimation;

• Perceptron, a one-layer neural network;

• Support Vector Machine, the result of a convex program.

PRA - 2013 13



Linear Classifiers

• This specific question,

“training set”
{(

xi ∈ R
d, yi ∈ {0, 1}

)

i=1..N

} ????
=⇒“best”c⋆, b⋆

has different answers. A (non-exhaustive!) selection of techniques:

• Linear Discriminant Analysis (or Fisher’s Linear Discriminant);

• Logistic regression maximum likelihood estimation;

• Perceptron, a one-layer neural network;

• Support Vector Machine, the result of a convex program.

• etc.

Which one should I use?
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Linear Classifiers

Which one should I use?

Too many criteria to answer that question.

Computational speed. Interpretability of the results. Batch or online training.
Theoretical guarantees and learning rates. Applicability of assumptions

underpinning the technique to your dataset. Source code availability. Parallel?.
Size (in bits) of the solution. Reproducibility of results & Numerical stability...etc.

Choosing the adequate tool for a specific dataset is
where your added value as a researcher in pattern recognition lies.
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Classification Separation Surfaces for Vectors

Given two sets of points...
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Classification Separation Surfaces for Vectors

It is sometimes possible to separate them perfectly
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Classification Separation Surfaces for Vectors

Each choice might look equivalently good on the training set,
but it will have obvious impact on new points
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Classification Separation Surfaces for Vectors
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Linear classifier, some degrees of freedom
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Linear classifier, some degrees of freedom
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Linear classifier, some degrees of freedom

Specially close to the border of the classifier
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Linear classifier, some degrees of freedom
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Linear classifier, some degrees of freedom

For each different technique, different results, different performance.
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Support Vector Machines

The linearly-separable case
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A criterion to select a linear classifier: the margin ?
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A criterion to select a linear classifier: the margin ?
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A criterion to select a linear classifier: the margin ?
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A criterion to select a linear classifier: the margin ?
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A criterion to select a linear classifier: the margin ?
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Largest Margin Linear Classifier ?
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Support Vectors with Large Margin
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In Mathematical Equations

• The training set is a finite set of n data/class pairs:

T = {(x1, y1), . . . , (xN , yN)} ,

where xi ∈ R
d and yi ∈ {−1, 1}.

• We assume (for the moment) that the data are linearly separable, i.e., that
there exists (w, b) ∈ R

d × R such that:

{

wTxi + b > 0 if yi = 1 ,

wTxi + b < 0 if yi = −1 .
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How to find the largest separating hyperplane?

For the linear classifier f(x) = wTx+ b consider the interstice defined by the
hyperplanes

• f(x) = wTx+ b = +1

• f(x) = wTx+ b = −1

w.x+b=0

x2
x1

w.x+b > +1

w.x+b < −1
w

w.x+b=+1

w.x+b=−1
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The margin is 2/||w||

• Indeed, the points x1 and x2 satisfy:

{

wTx1 + b = 0,

wTx2 + b = 1.

• By subtracting we get wT (x2 − x1) = 1, and therefore:

γ = 2||x2 − x1|| =
2

||w||.

where γ is the margin.

Large margin γ ⇔ Small ||w|| ⇔ Small ||w||2
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All training points should be on the good side

• For positive examples (yi = 1) this means:

wTxi + b ≥ 1

• For negative examples (yi = −1) this means:

wTxi + b ≤ −1

• in both cases:
∀i = 1, . . . , n, yi

(
wTxi + b

)
≥ 1
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Finding the optimal hyperplane

• Finding the optimal hyperplane is equivalent to finding (w, b) which minimize:

‖w‖2

under the constraints:

∀i = 1, . . . , n, yi
(
wTxi + b

)
− 1 ≥ 0.

This is a classical quadratic program on R
d+1

linear constraints - quadratic objective
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Lagrangian

• In order to minimize:
1

2
||w||2

under the constraints:

∀i = 1, . . . , n, yi
(
wTxi + b

)
− 1 ≥ 0.

• introduce one dual variable αi for each constraint,

• one constraint for each training point.

• the Lagrangian is, for α � 0 (that is for each αi ≥ 0)

L(w, b, α) =
1

2
||w||2 −

n∑

i=1

αi

(
yi
(
wTxi + b

)
− 1
)
.
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The Lagrange dual function

g(α) = inf
w∈Rd,b∈R

{

1

2
‖w‖2 −

n∑

i=1

αi

(
yi
(
wTxi + b

)
− 1
)

}

the saddle point conditions give us that at the minimum in w and b

w =

n∑

i=1

αiyixi, ( derivating w.r.t w) (∗)

0 =
n∑

i=1

αiyi, (derivating w.r.t b) (∗∗)

substituting (∗) in g, and using (∗∗) as a constraint, get the dual function g(α).

• To solve the dual problem, maximize g w.r.t. α.
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Dual optimum

The dual problem is thus

maximize g(α) =
∑n

i=1
αi − 1

2

∑n

i,j=1
αiαjyiyjx

T
i xj

such that α � 0,
∑n

i=1
αiyi = 0.

This is a quadratic program in R
n, with box constraints.

α⋆ can be computed using optimization software
(e.g. built-in matlab function)
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Dual optimum

The dual problem is thus

maximize g(α) =
∑n

i=1
αi − 1

2

∑n

i,j=1
αiαjyiyjx

T
i xj

such that α � 0,
∑n

i=1
αiyi = 0.

This is a quadratic program in R
n, with box constraints.

α⋆ can be computed using optimization software
(e.g. built-in matlab function)

All SVM toolboxes available can be interpreted
as customized solvers that handle
efficiently this particular problem.
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Dual optimum

The dual problem is thus

maximize g(α) =
∑n

i=1
αi − 1

2

∑n

i,j=1
αiαjyiyjx

T
i xj

such that α � 0,
∑n

i=1
αiyi = 0.

This is a quadratic program in R
n, with box constraints.

α⋆ can be computed using optimization software
(e.g. built-in matlab function)
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Recovering the optimal hyperplane

• With α⋆, we recover (wT
⋆ , b⋆) corresponding to the optimal hyperplane.

• wT
⋆ is given by wT

⋆ =
∑n

i=1
yiα

⋆
i x

T
i ,

• b⋆ is given by the conditions on the support vectors αi > 0, yi(w
Txi + b) = 1,

b⋆ = −1

2

(

min
yi=1,αi>0

(wT
⋆ xi) + max

yi=−1,αi>0
(wT

⋆ xi)

)

• the decision function is therefore:

f⋆(x) = wT
⋆ x+ b⋆

=

(
n∑

i=1

yiα
⋆
i x

T
i

)

x+ b⋆.

• Here the dual solution gives us directly the primal solution.
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From optimization theory...

Studying the relationship between primal/dual problems
is an important topic in optimization theory.

As a consequence, we can say many things about the optimal α⋆ and the
constraints of the original problem.

• Strong duality : primal and dual problems have the same optimum.

• Karush-Kuhn-Tucker Conditions give us that for every i ≤ n

α⋆
i (yi

(
wT

⋆ xi + b⋆
)
− 1) = 0.
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From optimization theory...

Studying the relationship between primal/dual problems
is an important topic in optimization theory.

As a consequence, we can say many things about the optimal α⋆ and the
constraints of the original problem.

• Strong duality : primal and dual problems have the same optimum.

• Karush-Kuhn-Tucker Conditions give us that for every i ≤ n

α⋆
i︸︷︷︸

multiplier i

× (yi
(
wT

⋆ xi + b⋆
)
− 1)

︸ ︷︷ ︸
constraint i

= 0.

• Hence, either

α⋆
i = 0 OR yi

(
wT

⋆ xi + b⋆
)
= 1.

• α⋆
i 6= 0 only for points that lie on the tube (support vectors!).
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Visualizing Support Vectors

α>0

α=0

w⋆ =
∑n

i=1
α⋆
i yixi

α⋆
i 6= 0 only for points that lie on the tube (support vectors!).
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Another interpretation: Convex Hulls

go back to 2 sets of points that are linearly separable
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Another interpretation: Convex Hulls

Linearly separable = convex hulls do not intersect
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Another interpretation: Convex Hulls

Find two closest points, one in each convex hull
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Another interpretation: Convex Hulls

The SVM = bisection of that segment
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Another interpretation: Convex Hulls

support vectors = extreme points of the faces on which the two points lie
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The non-linearly separable case

(when convex hulls intersect)
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What happens when the data is not linearly separable?
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What happens when the data is not linearly separable?
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What happens when the data is not linearly separable?
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What happens when the data is not linearly separable?
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Soft-margin SVM ?

• Find a trade-off between large margin and few errors.

• Mathematically:

min
f

{
1

margin(f)
+ C × errors(f)

}

• C is a parameter
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Soft-margin SVM formulation ?

• The margin of a labeled point (x, y) is

margin(x, y) = y
(
wTx+ b

)

• The error is

◦ 0 if margin(x, y) > 1,
◦ 1−margin(x, y) otherwise.

• The soft margin SVM solves:

min
w,b

{‖w‖2 + C

n∑

i=1

max{0, 1− yi
(
wTxi + b

)
}

• c(u, y) = max{0, 1− yu} is known as the hinge loss.

• c(wTxi + b, yi) associates a mistake cost to the decision w, b for example xi.
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Dual formulation of soft-margin SVM

• The soft margin SVM program

min
w,b

{‖w‖2 + C
n∑

i=1

max{0, 1− yi
(
wTxi + b

)
}

can be rewritten as

minimize ‖w‖2 + C
∑n

i=1
ξi

such that yi
(
wTxi + b

)
≥ 1− ξi

• In that case the dual function

g(α) =
n∑

i=1

αi −
1

2

n∑

i,j=1

αiαjyiyjx
T
i xj,

which is finite under the constraints:
{

0 ≤ αi≤ C, for i = 1, . . . , n
∑n

i=1
αiyi = 0.
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Interpretation: bounded and unbounded support vectors

C
α=0

0<α<C

α=
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What about the convex hull analogy?

• Remember the separable case

• Here we consider the case where the two sets are not linearly separable, i.e.
their convex hulls intersect.
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What about the convex hull analogy?

Definition 1. Given a set of n points A, and 0 ≤ C ≤ 1, the set of finite
combinations

n∑

i=1

λixi, 1 ≤ λi ≤ C,
n∑

i=1

λi = 1,

is the (C) reduced convex hull of A

• Using C = 1/2, the reduced convex hulls of A and B,

• Soft-SVM with C = closest two points of C-reduced convex hulls.
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Kernels
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Kernel trick for SVM’s

• use a mapping φ from X to a feature space,

• which corresponds to the kernel k:

∀x, x′ ∈ X , k(x, x′) = 〈φ(x), φ(x′) 〉

• Example: if φ(x) = φ

([
x1

x2

])

=

[
x2
1

x2
2

]

, then

k(x, x′) = 〈φ(x), φ(x′) 〉 = (x1)
2(x′

1)
2 + (x2)

2(x′
2)

2.
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Training a SVM in the feature space

Replace each xTx′ in the SVM algorithm by 〈φ(x), φ(x′) 〉 = k(x, x′)

• Reminder: the dual problem is to maximize

g(α) =

n∑

i=1

αi −
1

2

n∑

i,j=1

αi αj yi yj k(xi, xj),

under the constraints:
{

0 ≤ αi ≤ C, for i = 1, . . . , n
∑n

i=1
αiyi = 0.

• The decision function becomes:

f(x) = 〈w, φ(x) 〉+ b⋆

=
n∑

i=1

yiαik(xi, x)+ b⋆.
(1)
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The Kernel Trick ?

The explicit computation of φ(x) is not necessary.
The kernel k(x, x′) is enough.

• the SVM optimization for α works implicitly in the feature space.

• the SVM is a kernel algorithm: only need to input K and y:

maximize g(α) = αT1− 1

2
αT (K ⊙ yyT )α

such that 0 ≤ αi ≤ C, for i = 1, . . . , n
∑n

i=1
αiyi = 0.

• K’s positive definite ⇔ problem has an unique optimum

• the decision function is f(·) =∑n

i=1
αi k(xi, ·) + b.
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Kernel example: polynomial kernel

• For x = (x1, x2)
⊤ ∈ R

2, let φ(x) = (x2
1,
√
2x1x2, x

2
2) ∈ R

3:

K(x, x′) = x2
1x

′2
1 + 2x1x2x

′
1x

′
2 + x2

2x
′2
2

= {x1x
′
1 + x2x

′
2}2

= {xTx′}2 .

2R

x1

x2

x1

x2

2

PRA - 2013 67



Kernels are Trojan Horses onto Linear Models

• With kernels, complex structures can enter the realm of linear models
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What is a kernel

In the context of these lectures...

• A kernel k is a function

k : X × X 7−→ R

(x, y) −→ k(x, y)

• which compares two objects of a space X , e.g....

◦ strings, texts and sequences,

◦ images, audio and video feeds,

◦ graphs, interaction networks and 3D structures

• whatever actually... time-series of graphs of images? graphs of texts?...
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Fundamental properties of a kernel

symmetric

k(x, y) = k(y, x).

positive-(semi)definite
for any finite family of points x1, · · · , xn of X , the matrix

K =











k(x1, x1) k(x1, x2) · · · k(x1, xi) · · · k(x1, xn)
k(x2, x1) k(x2, x2) · · · k(x2, xi) · · · k(x2, xn)

... ... . . . ... ... ...
k(xi, x1) k(xi, x2) · · · k(xi, xi) · · · k(x2, xn)

... ... ... ... . . . ...
k(xn, x1) k(xn, x2) · · · k(xn, xi) · · · k(xn, xn)











� 0

is positive semidefinite (has a nonnegative spectrum).

K is often called the Gram matrix of {x1, · · · , xn} using k
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What can we do with a kernel?
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The setting

• Very loose setting: a set of objects x1, · · · , xn of X

• Sometimes additional information on these objects

◦ labels yi ∈ {−1, 1} or {1, · · · ,#(classes)},
◦ scalar values yi ∈ R,
◦ associated object yi ∈ Y

• A kernel k : X × X 7→ R.
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The Gram matrix perspective

• Imagine a little task: you have read 100 novels so far.

• You would like to know whether you will enjoy reading a new novel.

• A few options:

◦ read the book...
◦ have friends read it for you, read reviews.
◦ try to guess, based on the novels you read, if you will like it
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The Gram matrix perspective

Two distinct approaches

• Define what features can characterize a book.

◦ Map each book in the library onto vectors

−→ x =







x1

x2
...
xd







typically the xi’s can describe...
⊲ # pages, language, year 1st published, country,
⊲ coordinates of the main action, keyword counts,
⊲ author’s prizes, popularity, booksellers ranking

• Challenge: find a decision function using 100 ratings and features.
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The Gram matrix perspective

• Define what makes two novels similar,

◦ Define a kernel k which quantifies novel similarities.
◦ Map the library onto a Gram matrix

−→ K =







k(b1, b1) k(b1, b2) · · · k(b1, b100)
k(b2, b1) k(b2, b2) · · · k(b2, b100)

... ... . . . ...
k(bn, b1) k(bn, b2) · · · k(b100, b100)







• Challenge: find a decision function that takes this 100×100 matrix as an input.
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The Gram matrix perspective

Given a new novel,

• with the features approach, the prediction can be rephrased as what are the
features of this new book? what features have I found in the past that were
good indicators of my taste?

• with the kernel approach, the prediction is rephrased as which novels this
book is similar or dissimilar to? what pool of books did I find the most
influentials to define my tastes accurately?

kernel methods only use kernel similarities, do not consider features.

Features can help define similarities, but never considered elsewhere.
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The Gram matrix perspective

in kernel methods, clear separation between the kernel...

dataset x3

x4

x5
x2

x1

convex optimization

K5×5, kernel matrix

k

α

and Convex optimization (thanks to psdness of K, more later) to output the α’s.
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Kernel Trick

Given a dataset {x1, · · · , xN} and a new instance xnew

Many data analysis methods only depend on xT
i xj and xT

i xnew

• Ridge regression

• Principal Component Analysis

• Linear Discriminant Analysis

• Canonical Correlation Analysis

• etc.

Replace these evaluations by k(xi, xj) and k(xi,xnew)

• This will even work if the xi’s are not in a dot-product space! (strings, graphs,
images etc.)
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