Pattern Recognition Advanced

Discriminative Graphical Models: Conditional Random Fields

mcuturi@i.kyoto-u.ac.jp
Today’s talk

- Seen recently: hidden markov models, latent variables

- Today, present **Conditional Random Fields** (ICML 2001).

 - Proposed by the authors when working for (now defunct) WhizBang! labs.
 - WhizBang! labs was a company specialized in extracting automatically information from web-pages.
 - Objective: parse millions of webpages to select important content
 - job advertisements
 - company reports
 - Problem: recover structure in very large databases.

Reference text: [An Introduction to Conditional Random Fields](https://www.cs.cmu.edu/~jav/sutton-crf.html) by Sutton, McCallum

PRA - 2013
Today’s talk

Objective: **Annotate Subparts of Large Complex Objects**

- The theory is a general and applies to “random fields”.
- Difference with Hidden Markov Models: **we do not use a generative model**

\[X = \text{cat eat mice}, \quad Y = N \triangledown N \]

\[P(\underbrace{X}_{\text{text}}, \underbrace{Y}_{\text{parsing result}}) \]

- But only a **discriminative** approach, *i.e.* we only focus on

\[P(Y|X) \]

- Difference? \[P(X, Y) = P(Y|X)P(X). \] **no need to take care of** \[P(X). \]**
Graphical Models

an introduction
Structured Predictions

- For many applications, predicting **many joint variables** is fundamental.

- **Examples**
 - classify regions of an image,
 - segmenting genes in a strand of DNA,
 - extract syntax from natural-language text

- The goal is to **produce local predictors**

 \[y = \{y_0, y_1, \ldots, y_T\} \text{ given } x \]

- Of course, one could only focus on individual regression/classification task

 \[x \mapsto y_s, \text{ for each } s, \]

 independently... but then how can we make sure the final answer is **coherent**?
A natural way to model constraints on output variables is provided by graphical models, e.g. Bayesian networks, Neural networks, factor graphs, Markov random fields, Ising models, etc.

Graphical models represent a complex distribution over many variables as a product of local factors on smaller subsets of variables.

Two types of graphical models: directed and undirected.
Some Notations First

- We consider probabilities on variables indexed by $V = X \cup Y$,
 - X is a set of input variables
 - Y is a set of output variables that we wish to predict.
- We assume that each variable takes values in a discrete set.
- An assignment to all variables indexed in X (resp. Y) is denoted x (resp. y).
- An assignment to all variables indexed in X and Y is denoted $z = (x, y)$.
 - For $s \in X$, x_s denotes the value assigned to s by x.
 - For $s \in Y$, y_s denotes the value assigned to s by y.
 - For $v \in V$, z_s denotes the value assigned to s by z.
 - For a subset $a \subseteq V$, $z_a = (z_s)_{s \in a}$.
Given a collection of subsets $\mathcal{F} \subset \mathcal{P}(V)$, an undirected graphical model is the set of all distributions that can be written as

$$p(x, y) = \frac{1}{Z} \prod_{a \in \mathcal{F}} \Psi_a(z_a),$$

for any choice of local function $F = \{\Psi_a\}$, where $\Psi_a : \mathcal{V}^{|a|} \rightarrow \mathbb{R}_+$.

Undirected Graphical Models
Undirected Graphical Models

\[p(x, y) = \frac{1}{Z} \prod_{a \in F} \Psi_a(z_a) \]

- Usually sets \(a \) are much smaller than the full variable set \(V \).
- \(Z \) is a normalization factor, defined as

\[
Z = \sum_{x, y} \prod_{a \in F} \Psi_a(z_a).
\]

- Computations are easier if each local function is an exponential model:

\[
\Psi_a(x_a, y_a) = \exp \left(\sum_k \theta_{ak} f_{ak}(z_a) \right),
\]

- For each \(k \) and subset of variables \(a \), a weighted feature \(f_{ak}(z_a) \) with \(\theta_{ak} \).
Directed Graphical Model

- Let $G = (V, E)$ be a directed acyclic graph.
- For each v, $\pi(v) \subset V$ is the set of parents of v in G.

- A directed graphical model is a family of distributions that factorize as:

$$p(y, x) = \prod_{v \in V} p(z_v | z_{\pi(v)}).$$

- Difference: not only subsets α, but also directions, given by π.
Starting Slowly: Naive Bayes
Text Classes

- Suppose a whole text can only belong to one category.

\[\text{TEXT} \leftrightarrow \text{CATEGORY} \]

- Here, we assume also that there is a joint probability on texts and their category.

\[P(\text{text, category}) \]

which quantifies how likely the match between

a text text and a category category is

- For instance,

\[P(\text{‘I am feeling hungry these days’, ‘poetry’}) \approx 0 \]

\[P(\text{‘Manchester United’s stock rose after their victory’, ‘business’}) \]

\[\lor \]

\[P(\text{‘Manchester United’s stock rose after their victory’, ‘sports’}) \]
Hence, given a sequence of words (including punctuation),

\[w = (w_1, w_2, w_3, w_4, w_5, w_6, w_7, w_8, \ldots, w_n) \]

assuming we know \(P \), the joint probability between texts and categories,

an easy way to guess the category of \(w \) is by looking at

\[
\text{category-prediction}(w) = \arg\max_C P(C|w_1, w_2, \ldots, w_n)
\]
\[P(\text{'poetry'}|\text{`I am feeling hungry these days'}) = 0.0037 \]
\[P(\text{'business'}|\text{`I am feeling hungry these days'}) = 0.005 \]
\[P(\text{'sports'}|\text{`I am feeling hungry these days'}) = 0.003 \]
\[P(\text{'food'}|\text{`I am feeling hungry these days'}) = 0.2 \]
\[P(\text{'economy'}|\text{`I am feeling hungry these days'}) = 0.04 \]
\[P(\text{'society'}|\text{`I am feeling hungry these days'}) = 0.08 \]
Text classification & probabilistic framework

\[P(\text{'poetry'}|\text{I am feeling hungry these days}) = 0.0037 \]
\[P(\text{'business'}|\text{I am feeling hungry these days}) = 0.005 \]
\[P(\text{'sports'}|\text{I am feeling hungry these days}) = 0.003 \]
\[\rightarrow P(\text{'food'}|\text{I am feeling hungry these days}) = 0.2 \]
\[P(\text{'economy'}|\text{I am feeling hungry these days}) = 0.04 \]
\[P(\text{'society'}|\text{I am feeling hungry these days}) = 0.08 \]
Bayes Rule

- Using Bayes theorem \(p(A, B) = p(A|B)p(B) \),

\[
P(C|w_1, w_2, \cdots, w_n) = \frac{P(C, w_1, w_2, \cdots, w_n)}{P(w_1, w_2, \cdots, w_n)}
\]

- When looking for the category \(C \) that best fits \(w \), we only focus on the numerator.

- Bayes theorem also gives that

\[
P(C, w_1, \cdots, w_n) = P(C)P(w_1, w_2, \cdots, w_n|C)
\]

\[
= P(C)P(w_1|C)P(w_2, w_3, \cdots, w_n|C, w_1)
\]

\[
= P(C)P(w_1|C)P(w_2|C, w_1)P(w_3, w_4, \cdots, w_n|C, w_1, w_2)
\]

\[
= P(C)\prod_{i=1}^{n} P(w_i|C, w_1, \cdots, w_{i-1})
\]
Examples

- Assume we have the beginning of this news title

 \(w_1, \ldots, w_{12} = \text{‘The weather was so bad that the organizers decided to close the’} \)

- If \(C = \text{business} \), then

 \[
P(W_{13} = \text{‘market’}|\text{business}, w_1, \ldots, w_{12})
 \]

 should be quite high, as well as summit, meeting etc..

- On the other hand, if we know \(C = \text{sports} \), the probability for \(w_{13} \) changes significantly...

 \[
P(W_{13} = \text{‘game’}|\text{sports}, w_1, \ldots, w_{12})
 \]
The Naive Bayes Assumption

• From a factorization

\[P(C, w_1, \ldots, w_n) = P(C) \prod_{i=1}^{n} P(w_i|C, w_1, \ldots, w_{i-1}) \]

which handles all the \textbf{conditional} structures of text,

• we assume that each word appears \textbf{independently conditionally} to \(C \),

\[P(w_i|C, w_1, \ldots, w_{i-1}) = P(w_i|C, w_1, \ldots, w_{i-1}) \]
\[= P(w_i|C) \]

• and thus

\[P(C, w_1, \ldots, w_n) = P(C) \prod_{i=1}^{n} P(w_i|C) \]
Naive Bayes & Logistic Regression
Binary Case
Recall the **Naive Bayes Assumption** on $p(x, y)$

\[
p(x, y) = p(y) \prod_{k=1}^{N} p(x_k|y)
\]

- Bayes classifier can be interpreted as a **directed** graphical model, where
 - $V = \{X = \{1, \ldots, N\}\} \cup \{Y = 1\}$
 - All elements of X have only one parent:
 \[
 \pi(i) = 1.
 \]
Logistic Regression

- Famous technique for classification (with binary variables):

 Logistic Regression (or Maximum Entropy Classifier), model $p(y|x)$

 $$p(y|x) = \frac{1}{Z(x)} \exp \left\{ \theta_y + \sum_{j=1}^{N} \theta_{y,j} x_j \right\},$$

- by malaxing things a bit, introducing
 - $f_{y',j}(y, x) = \delta_{y'=y} x_j$
 - $f_{y'}(y, x) = \delta_{y'=y}$

- and renumbering all these functions (and the corresponding weights $\theta_{y,j}$ and θ_y) 1 to K,

 $$p(y|x) = \frac{1}{Z(x)} \exp \left\{ \sum_{k=1}^{K} \theta_k f_k(y, x) \right\}.$$

 we obtain an **undirected** graphical model.
A Simple Example: Classification

Naive Bayes Assumption, \(p(x, y) \)

\[
p(x, y) = p(y) \prod_{k=1}^{N} p(x_k | y)
\]

equivalent to a directed graphical model

Logistic Regression, \(p(y|x) \)

\[
p(y|x) = \frac{1}{Z(x)} \exp \left\{ \sum_{k=1}^{K} \theta_k f_k(y, x) \right\}.
\]

equivalent to an undirected graphical model
Link between Naive Bayes and Logistic Regression

Deriving the conditional distribution $p(y|x)$ of Naive Bayes

$$p(x, y) = p(y) \prod_{k=1}^{N} p(x_k|y)$$

- Let us study the case where all variables are binary.
Link between Naive Bayes and Logistic Regression

• Set

\[p_1 = P(y = 1) \]
\[p_{i0} = P(x_i = 1|y = 0) \]
\[p_{i1} = P(x_i = 1|y = 1) \]

• Then

\[p(x_i = x_i|y = y) = p_{i0}^{(1-y)x_i} p_{i1}^{y x_i} (1-p_{i0})^{(1-y)(1-x_i)} (1-p_{i1})^y (1-x_i) \]

and

\[p(y = y) = p_1^y (1-p_1)^{1-y} \]

• Define

\[\theta_0 = \log \frac{p_1}{1-p_1} + \sum_{i=1}^{n} \log \frac{1-p_{i1}}{1-p_{i0}} \]
\[\phi_i = \log \frac{p_{i0}}{1-p_{i0}} \]
\[\theta_i = \log \frac{(1-p_{i0}) p_{i1}}{p_{i0} (1-p_{i1})} \]

Source: Y.Bulatov
Link between Naive Bayes and Logistic Regression

- then

\[
p(x, y) = \frac{e^{\theta_0 y} e^{\sum_{i=1}^N \phi_i x_i} e^{\sum_{i=1}^N \theta_i y x_i}}{\prod_{i=1}^N (1 + e^{\phi_i}) + e^{\theta_0} \prod_{i=1}^N (1 + e^{\theta_i + \phi_i})}
\]

- which can be decomposed again as

\[
p(x, y) = \frac{e^{(\theta_0 + \sum_{i=1}^N \theta_i x_i)y}}{1 + e^{\theta_0 + \sum_{i=1}^N \theta_i x_i}} \times \frac{e^{\sum_{i=1}^N \phi_i x_i} \left(1 + e^{\theta_0 + \sum_{i=1}^N \theta_i x_i}\right)}{\prod_{i=1}^N (1 + e^{\phi_i}) + e^{\theta_0} \prod_{i=1}^N (1 + e^{\theta_i + \phi_i})}
\]

\[
= p(y|x) \times p(x)
\]

- We have highlighted the conditional distribution induced by naive Bayes in the case of binary variables.

- This conditional distribution coincides with the logistic regression form

- This can be shown for many other cases (e.g. \(p(x_k|y)\) is Gaussian)
Next Example, Sequence Models

Predict the corresponding structure $Y = 1, \ldots, T$ of T words, $X = 1, \ldots, T$

Recall the **Hidden Markov Model** on $p(x, y)$

$$p(x, y) = p(y_1) \prod_{k=1}^{N} p(y_t|y_{t-1}) p(x_t|y_t)$$

- Of course, HMM’s are **directed** graphical model, where
 - $V = \{X = \{1, \ldots, T\}\} \cup \{Y = \{1, \ldots, T\}\}$
 - Each element of X has only one parent:
 $$\pi(i) = i.$$
 - Each element of $\{2, \ldots, T\}$ has one parent:
 $$\pi(i) = i - 1.$$
The **Linear Conditional Random Field** on $p(y|x)$

- A *linear-chain CRF* is a distribution $p(y|x)$ that takes the form

$$p(y|x) = \frac{1}{Z(x)} \prod_{t=1}^{T} \exp \left\{ \sum_{k=1}^{K} \theta_{k} f_{k}(y_{t}, y_{t-1}, x_{t}) \right\},$$

where $Z(x)$ is an instance-specific normalization function

$$Z(x) = \sum_{y} \prod_{t=1}^{T} \exp \left\{ \sum_{k=1}^{K} \theta_{k} f_{k}(y_{t}, y_{t-1}, x_{t}) \right\}.$$

- The Linear-Chain CRF is an **undirected** graphical model
Let us rewrite the HMM density

\[p(y, x) = \frac{1}{Z} \prod_{t=1}^{T} \exp \left\{ \sum_{i,j \in S} \theta_{ij} 1\{y_t=i\} 1\{y_{t-1}=j\} + \sum_{i \in S} \sum_{o \in O} \mu_{oi} 1\{y_t=i\} 1\{x_t=o\} \right\}, \]

where \(S \) (states) is the set of values possibly taken by \(y \) and \(O \) (outputs) by \(x \).

Every HMM can be written in this form by setting

\[\theta_{ij} = \log p(y' = i | y = j) \quad \text{and} \quad \mu_{oi} = \log p(x = o | y = i). \]
From HMM to Linear CRF

● We can highlight again the **feature functions** perspective:

● Each feature function has the form

\[f_k(y_t, y_{t-1}, x_t). \]

● There needs to be one feature for each **transition** \((i, j)\),

\[f_{ij}(y, y', x) = 1_{\{y=i\}} 1_{\{y'=j\}} \]

and one feature for each **state-observation pair** \((i, o)\),

\[f_{io}(y, y', x) = 1_{\{y=i\}} 1_{\{x=o\}} \]

● Once this is done, we get

\[p(y, x) = \frac{1}{Z} \prod_{t=1}^{T} \exp \left\{ \sum_{k=1}^{K} \theta_k f_k(y_t, y_{t-1}, x_t) \right\}. \]

where \(f_k\) ranges over both all of the \(f_{ij}\) and all of the \(f_{io}\).
From HMM to Linear CRF

- Last step: write the conditional distribution $p(y|x)$ induced by HMM's

$$p(y|x) = \frac{p(y, x)}{\sum_{y'} p(y', x)} = \frac{\prod_{t=1}^{T} \exp \left\{ \sum_{k=1}^{K} \theta_k f_k(y_t, y_{t-1}, x_t) \right\}}{\sum_{y'} \prod_{t=1}^{T} \exp \left\{ \sum_{k=1}^{K} \theta_k f_k(y'_t, y'_{t-1}, x_t) \right\}}.$$

- this is the linear CRF induced by HMM's...
Differences between HMM and Linear CRF

- If \(p(y, x) \) factorizes as an HMM \(\Rightarrow \) distribution \(p(y|x) \) is a linear-chain CRF.

 However, other types of linear-chain CRFs, \textbf{not induced by HMM’s}, are also useful

- For example,
 - in an HMM, a transition from state \(i \) to \(j \) receives the same score,
 \[
 \log p(y_t = j | y_{t-1} = i),
 \]
 regardless of the \(x_{t-1} \).
 - In a CRF, the score of the transition \((i, j)\) might depend \textbf{for instance} on the current observation vector, \textit{e.g.} by defining
 \[
 f_k = \mathbf{1}_{\{y_t=j\}} \mathbf{1}_{\{y_{t-1}=1\}} \mathbf{1}_{\{x_t=o\}}.
 \]
General CRF

\[p(y|x) \] is a conditional random field if the distribution \(p(y|x) \) can be written as
\[
p(y|x) = \frac{1}{Z(x)} \prod_{\Psi_a \in \mathcal{F}} \exp \left\{ \sum_{k=1}^{K(a)} \theta_{ak} f_{ak}(y_a, x_a) \right\}.
\]

- Many parameters potentially...
- For linear chain CRF, same weights/functions are used for factors \(\Psi_t(y_t, y_{t-1}, x_t), \forall t \).
- **Solution**: Partition set of subsets of variables \(\mathcal{F} \) into groups \(\mathcal{F} = \mathcal{F}_1, \ldots, \mathcal{F}_P \).
- Each subset \(\mathcal{F}_i \) is a set of subsets of variables which share the same local functions, i.e.
\[
p(y|x) = \frac{1}{Z(x)} \prod_{\mathcal{F}_i \in \mathcal{F}} \prod_{\Psi_a \in \mathcal{F}_i} \Psi_a(y_a, x_a)
\]
where
\[
\Psi_a(y_a, x_a) = \exp \left\{ \sum_{k=1}^{K(i)} \theta_{ik} f_{ik}(y_a, x_a) \right\}.
\]
- Most CRF’s of interest implement such structures.
Features - Factorization

- CRF’s are very general **structures**. What about the practical implementation?
- Features depend on the task. In some NLP tasks with linear CRF,

\[f_{pk}(y_c, x_c) = 1_{\{y_c = \tilde{y}_c\}} q_{pk}(x_c). \]

- Each feature is **factorized**
 - is nonzero only for a single output configuration \(\tilde{y}_c \),
 - its value only depends input observation \(x_c \).
- This **factorization** is attractive because computationally efficient:
 - computing each \(q_{pk} \) may involve nontrivial text or image processing,
 - However, we only need to evaluate it **once**, even if it shared across many features.
- These functions \(q_{pk}(x_c) \) are called **observation functions**.
- Examples of observation functions are
 - “word \(x_t \) is capitalized”,
 - “word \(x_t \) ends in \(\text{ing} \)”.

PRA - 2013

33
Learning with Linear Chain CRF’s
Estimation and Prediction

A linear-chain CRF is a distribution \(p(y|x) \) that takes the form

\[
p(y|x) = \frac{1}{Z(x)} \prod_{t=1}^{T} \exp \left\{ \sum_{k=1}^{K} \theta_k f_k(y_t, y_{t-1}, x_t) \right\},
\]

- Two major tasks ahead:
 - Given a set of features \(f_k \), estimate all parameters \(\theta_k \)
 - Predict the labels of a new input \(x \), \(y^* = \arg \max_y p(y|x) \).

- We first review the **prediction** task, **estimation** is covered next.

- In the **prediction** task, we will re-use the **Forward-Backward and Viterbi algorithms** of HMM's.
Prediction - Backward Forward

- The HMM’s distribution can be factorized as a directed graphical model

\[p(y, x) = \prod_t \Psi_t(y_t, y_{t-1}, x_t) \]

(with \(Z = 1 \)) and factors defined as:

\[\Psi_t(j, i, x) \overset{\text{def}}{=} p(y_t = j|y_{t-1} = i)p(x_t = x|y_t = j). \]

- The HMM forward algorithm, used to compute the probability \(p(x) \) of observations, uses the summation.

\[p(x) = \sum_y p(x, y) = \sum_y \prod_{t=1}^T \Psi_t(y_t, y_{t-1}, x_t) \]

\[= \sum_{y_T} \sum_{y_{T-1}} \Psi_T(y_T, y_{T-1}, x_T) \sum_{y_{T-2}} \Psi_{T-1}(y_{T-1}, y_{T-2}, x_{T-1}) \sum_{y_{T-3}} \cdots \]

- Idea: cache intermediate sum which are reused many times during the computation of the outer sum.
• In that sense, define **forward variables** $\alpha_t \in \mathbb{R}^M$ (where M is the number of states),

$$
\alpha_t(j) \overset{\text{def}}{=} p(x_{1...t}, y_t = j)
$$

$$
= \sum_{y_{1...t-1}} \Psi_t(j, y_{t-1}, x_t) \prod_{t'=1}^{t-1} \Psi_{t'}(y_{t'}, y_{t'-1}, x_{t'})
$$

• The summation over $y_{1...t-1}$ ranges over all assignments to $y_1, y_2, \ldots, y_{t-1}$.

• The α_t can be computed by the recursion

$$
\alpha_t(j) = \sum_{i \in S} \Psi_t(j, i, x_t) \alpha_{t-1}(i)
$$

with initialization $\alpha_1(j) = \Psi_1(j, y_0, x_1)$. (Recall that y_0 is the fixed initial state of the HMM.)

• We can check that $p(x) = \sum_{y_T} \alpha_T(y_T)$.

PRA - 2013
Prediction - Backward

- Define a **backward recursion**, with reverse order: introduce β_t’s

\[
\beta_t(i) \overset{\text{def}}{=} p(x_{t+1\ldots T} | y_t = i) = \sum_{y_{t+1\ldots T}} \prod_{t'=t+1}^T \Psi_{t'}(y_{t'}, y_{t'-1}, x_{t'}),
\]

and the recursion

\[
\beta_t(i) = \sum_{j \in S} \Psi_{t+1}(j, i, x_{t+1}) \beta_{t+1}(j),
\]

- **Initialization:** $\beta_T(i) = 1$.

- Analogously to the forward case, $p(x)$ can be computed using the backward variables as

\[
p(x) = \beta_0(y_0) \overset{\text{def}}{=} \sum_{y_1} \Psi_1(y_1, y_0, x_1) \beta_1(y_1).
\]
Prediction - Forward Backward

- The FB recursions can be combined to obtain the marginal distributions

\[p(y_{t-1}, y_t | x) \]

- Two perspectives can be applied, with identical result:

- Taking first a probabilistic viewpoint we can write

\[
p(y_{t-1}, y_t | x) = \frac{p(x | y_{t-1}, y_t) p(y_t, y_{t-1})}{p(x)}
\]

\[
= \frac{p(x_{(1...t-1)}, y_{t-1}) p(y_t | y_{t-1}) p(x_t | y_t) p(x_{(t+1...T)} | y_t)}{p(x)}
\]

\[
\propto \alpha_{t-1}(y_{t-1}) \Psi_t(y_t, y_{t-1}, x_t) \beta_t(y_t),
\]

where in the second line we have used the fact that \(x_{(1...t-1)} \) is independent from \(x_{(t+1...T)} \) and from \(x_t \) given \(y_{t-1}, y_t \).
Taking a factorization perspective, we see that

\[
p(y_{t-1}, y_t, x) = \Psi_t(y_t, y_{t-1}, x_t)
\]

\[
\left(\sum_{y_{1 \ldots t-2}} \prod_{t' = 1}^{t-1} \Psi_{t'}(y_{t'}, y_{t'-1}, x_{t'}) \right)
\]

\[
\left(\sum_{y_{(t+1) \ldots T}} \prod_{t' = t+1}^{T} \Psi_{t'}(y_{t'}, y_{t'-1}, x_{t'}) \right)
\]

which can be computed from the forward and backward recursions as

\[
p(y_{t-1}, y_t, x) = \alpha_{t-1}(y_{t-1}) \Psi_t(y_t, y_{t-1}, x_t) \beta_t(y_t).
\]

With \(p(y_{t-1}, y_t, x) \), renormalize over \(y_t, y_{t-1} \) to obtain the desired marginal \(p(y_{t-1}, y_t | x) \).
• To compute the **globally most probable assignment** $y^* = \arg\max_y p(y|x)$,

• we observe that the trick earlier still works if all summations are replaced by maximization.

• This yields the Viterbi recursion:

$$
\delta_t(j) = \max_{i \in S} \Psi_t(j, i, x_t) \delta_{t-1}(i)
$$
Natural **generalization** of forward-backward and Viterbi algorithms to linear-chain CRFs

- Only transition weights \(\Psi_t(j, i, x_t) \) need to be redefined.
- The CRF model can be rewritten as:

\[
p(y|x) = \frac{1}{Z(x)} \prod_{t=1}^{T} \Psi_t(y_t, y_{t-1}, x_t),
\]

where we define

\[
\Psi_t(y_t, y_{t-1}, x_t) = \exp \left\{ \sum_k \theta_k f_k(y_t, y_{t-1}, x_t) \right\}.
\]

- Using these definitions, use identical algorithms.
- Instead of computing \(p(x) \) as in an HMM, in a CRF the forward and backward recursions compute \(Z(x) \).
Parameter Estimation

- Suppose we have i.i.d training data
 \[\mathcal{D} = \{x^{(i)}, y^{(i)}\}_{i=1}^{N}, \]

 - each \(x^{(i)} = \{x_1^{(i)}, x_2^{(i)}, \ldots x_T^{(i)}\} \) is a sequence of inputs,
 - each \(y^{(i)} = \{y_1^{(i)}, y_2^{(i)}, \ldots y_T^{(i)}\} \) is a sequence of the desired predictions.

- Parameter estimation can be performed by **penalized maximum conditional likelihood**.

\[
\ell(\theta) = \frac{1}{N} \sum_{i=1}^{N} \log p(y^{(i)}|x^{(i)}).
\]

namely,

\[
\ell(\theta) = \sum_{i=1}^{N} \sum_{t=1}^{T} \sum_{k=1}^{K} \theta_k f_k(y_t^{(i)}, y_{t-1}^{(i)}, x_t^{(i)}) - \sum_{i=1}^{N} \log Z(x^{(i)}).
\]