Statistical Machine Learning, Part I

Regression 2

mcuturi@i.kyoto-u.ac.jp

Last Week

Regression: highlight a functional relationship between a predicted variable and predictors

Last Week

Regression: highlight a functional relationship between a predicted variable and predictors

find a function f such that

$$
\forall(\mathrm{x}, \boldsymbol{y}) \text { that can appear }, \boldsymbol{f}(\mathrm{x}) \approx \boldsymbol{y}
$$

Last Week

Regression: highlight a functional relationship between a predicted variable and predictors
to find an accurate function f such that

$$
\forall(\mathbf{x}, \boldsymbol{y}) \text { that can appear }, \boldsymbol{f}(\mathbf{x}) \approx \boldsymbol{y}
$$

use a data set \& the least-squares criterion:

$$
\min _{f \in \mathcal{F}} \frac{1}{N} \sum_{j=1}^{N}\left(\boldsymbol{y}_{j}-\boldsymbol{f}\left(x_{j}\right)\right)^{2}
$$

Last Week

Regression: highlight a functional relationship between a predicted variable and predictors

- when regressing a real number vs a real number :

- Least-Squares Criterion $L\left(b, a_{1}, \cdots, a_{p}\right)$ to fit lines, polynomials.
- results in solving a linear system.

$$
\frac{\partial 2^{\text {nd }} \operatorname{order}\left(b, a_{1}, \cdots, a_{p}\right)}{\partial a_{p}}=\text { linear in }\left(b, a_{1}, \cdots, a_{p}\right)
$$

- When setting $\partial L / \partial a_{p}=0$ we get $p+1$ linear equations for $p+1$ variables.

Last Week

Regression: highlight a functional relationship between a predicted variable and predictors

- when regressing a real number vs d real numbers (vector in \mathbb{R}^{d}),
- find best fit $\alpha \in \mathbb{R}^{d}$ such that $\left(\alpha^{T} \mathbf{x}+\alpha_{0}\right) \approx y$.
- Add to $d \times N$ data matrix, a row of 1's to get the predictors \boldsymbol{X}.
- The row \boldsymbol{Y} of predicted values
- The Least-Squares criterion also applies:

$$
\begin{aligned}
& L(\alpha)=\left\|\boldsymbol{Y}-\alpha^{T} \boldsymbol{X}\right\|^{2}=\left(\alpha^{T} \boldsymbol{X} \boldsymbol{X}^{T} \alpha-2 \boldsymbol{Y} \boldsymbol{X}^{T} \alpha+\|\boldsymbol{Y}\|^{2}\right) . \\
& \nabla_{\alpha} L=0 \quad \Rightarrow \quad \alpha^{\star}=\left(\boldsymbol{X} \boldsymbol{X}^{\boldsymbol{T}}\right)^{-1} \boldsymbol{X} \boldsymbol{Y}^{\boldsymbol{T}}
\end{aligned}
$$

- This works if $\boldsymbol{X} X^{T} \in \mathbb{R}^{d+1}$ is invertible.

Last Week

$\gg\left(X * X^{\prime}\right) \backslash\left(X * Y^{\prime}\right)$
ans $=$

-0.049332605603095	\times age
0.163122792160298	\times surface
-0.004411580036614	\times distance
2.731204399433800	+27.300 JPY

Today

- A statistical / probabilistic perspective on LS-regression
- A few words on polynomials in higher dimensions
- A geometric perspective
- Variable co-linearity and Overfitting problem
- Some solutions: advanced regression techniques
- Subset selection
- Ridge Regression
- Lasso

A (very few) words on the statistical/probabilistic interpretation of LS

The Statistical Perspective on Regression

- Assume that the values of y are stochastically linked to observations \mathbf{x} as

$$
\boldsymbol{y}-\left(\alpha^{T} \mathbf{x}+\beta\right) \sim \mathcal{N}(0, \sigma)
$$

- This difference is a random variable called ε and is called a residue.

The Statistical Perspective on Regression

- This can be rewritten as,

$$
\boldsymbol{y}=\left(\alpha^{T} \mathbf{x}+\beta\right)+\varepsilon, \quad \varepsilon \sim \mathcal{N}(0, \sigma)
$$

- We assume that the difference between y and $\left(\alpha^{T} \mathbf{x}+b\right)$ behaves like a Gaussian (normally distributed) random variable.

$$
\text { Goal as a statistician: Estimate } \alpha \text { and } \beta \text { given observations. }
$$

Identically Independently Distributed (i.i.d) Observations

- Statistical hypothesis: assume that the parameters are $\alpha=\mathbf{a}, \beta=b$

Identically Independently Distributed (i.i.d) Observations

- Statistical hypothesis: assume that the parameters are $\alpha=\mathbf{a}, \beta=b$
- In such a case, what would be the probability of each observation $\left(\mathbf{x}_{j}, y_{j}\right)$?

Identically Independently Distributed (i.i.d) Observations

- Statistical hypothesis: assuming that the parameters are $\alpha=\mathbf{a}, \beta=b$, what would be the probability of each observation?:
- For each couple $\left(\mathbf{x}_{j}, y_{j}\right), j=1, \cdots, N$,

$$
P\left(\mathbf{x}_{j}, y_{j} \mid \alpha=\mathbf{a}, \beta=b\right)=\frac{1}{\sqrt{2 \pi} \sigma} \exp \left(-\frac{\left\|y_{j}-\left(\mathbf{a}^{T} \mathbf{x}_{j}+b\right)\right\|^{2}}{2 \sigma^{2}}\right)
$$

Identically Independently Distributed (i.i.d) Observations

- Statistical hypothesis: assuming that the parameters are $\alpha=\mathbf{a}, \beta=b$, what would be the probability of each observation?:
- For each couple $\left(\mathbf{x}_{j}, y_{j}\right), j=1, \cdots, N$,

$$
P\left(\mathbf{x}_{j}, y_{j} \mid \alpha=\mathbf{a}, \beta=b\right)=\frac{1}{\sqrt{2 \pi} \sigma} \exp \left(-\frac{\left\|y_{j}-\left(\mathbf{a}^{T} \mathbf{x}_{j}+b\right)\right\|^{2}}{2 \sigma^{2}}\right)
$$

- Since each measurement $\left(\mathbf{x}_{j}, y_{j}\right)$ has been independently sampled,

$$
P\left(\left\{\left(\mathbf{x}_{j}, y_{j}\right)\right\}_{j=1, \cdots, N} \mid \alpha=a, \beta=b\right)=\prod_{j=1}^{N} \frac{1}{\sqrt{2 \pi} \sigma} \exp \left(-\frac{\left\|y_{j}-\left(\mathbf{a}^{T} \mathbf{x}_{j}+b\right)\right\|^{2}}{2 \sigma^{2}}\right)
$$

Identically Independently Distributed (i.i.d) Observations

- Statistical hypothesis: assuming that the parameters are $\alpha=\mathbf{a}, \beta=b$, what would be the probability of each observation?:
- For each couple $\left(\mathbf{x}_{j}, y_{j}\right), j=1, \cdots, N$,

$$
P\left(\mathbf{x}_{j}, y_{j} \mid \alpha=\mathbf{a}, \beta=b\right)=\frac{1}{\sqrt{2 \pi} \sigma} \exp \left(-\frac{\left\|y_{j}-\left(\mathbf{a}^{T} \mathbf{x}_{j}+b\right)\right\|^{2}}{2 \sigma^{2}}\right)
$$

- Since each measurement $\left(\mathbf{x}_{j}, y_{j}\right)$ has been independently sampled,

$$
P\left(\left\{\left(\mathbf{x}_{j}, y_{j}\right)\right\}_{j=1, \cdots, N} \mid \alpha=a, \beta=b\right)=\prod_{j=1}^{N} \frac{1}{\sqrt{2 \pi} \sigma} \exp \left(-\frac{\left\|y_{j}-\left(\mathbf{a}^{T} \mathbf{x}_{j}+b\right)\right\|^{2}}{2 \sigma^{2}}\right)
$$

- A.K.A likelihood of the dataset $\left\{\left(\mathbf{x}_{j}, y_{j}\right)_{j=1, \cdots, N}\right\}$ as a function of a and b,

$$
\mathcal{L}_{\left\{\left(\mathbf{x}_{j}, y_{j}\right)\right\}}(\mathbf{a}, b)=\prod_{j=1}^{N} \frac{1}{\sqrt{2 \pi} \sigma} \exp \left(-\frac{\left\|y_{j}-\left(\mathbf{a}^{T} \mathbf{x}_{j}+b\right)\right\|^{2}}{2 \sigma^{2}}\right)
$$

Maximum Likelihood Estimation (MLE) of Parameters

Hence, for \mathbf{a}, b, the likelihood function on the dataset $\left\{\left(\mathbf{x}_{j}, y_{j}\right)_{j=1, \ldots, N}\right\} \ldots$

$$
\mathcal{L}(\mathbf{a}, b)=\prod_{j=1}^{N} \frac{1}{\sqrt{2 \pi} \sigma} \exp \left(-\frac{\left\|y_{j}-\left(\mathbf{a}^{T} \mathbf{x}_{j}+b\right)\right\|^{2}}{2 \sigma^{2}}\right)
$$

Maximum Likelihood Estimation (MLE) of Parameters

Hence, for \mathbf{a}, b, the likelihood function on the dataset $\left\{\left(\mathbf{x}_{j}, y_{j}\right)_{j=1, \cdots, N}\right\} \ldots$

$$
\mathcal{L}(\mathbf{a}, b)=\prod_{j=1}^{N} \frac{1}{\sqrt{2 \pi} \sigma} \exp \left(-\frac{\left\|y_{j}-\left(\mathbf{a}^{T} \mathbf{x}_{j}+b\right)\right\|^{2}}{2 \sigma^{2}}\right)
$$

Why not use the likelihood to guess (\mathbf{a}, b) given data?

Maximum Likelihood Estimation (MLE) of Parameters

Hence, for \mathbf{a}, b, the likelihood function on the dataset $\left\{\left(\mathbf{x}_{j}, y_{j}\right)_{j=1, \ldots, N}\right\} \ldots$

$$
\mathcal{L}(\mathbf{a}, b)=\prod_{j=1}^{N} \frac{1}{\sqrt{2 \pi} \sigma} \exp \left(-\frac{\left\|y_{j}-\left(\mathbf{a}^{T} \mathbf{x}_{j}+b\right)\right\|^{2}}{2 \sigma^{2}}\right)
$$

...the MLE approach selects the values of (\mathbf{a}, b) which mazimize $\mathcal{L}(\mathbf{a}, b)$

Maximum Likelihood Estimation (MLE) of Parameters

Hence, for \mathbf{a}, b, the likelihood function on the dataset $\left\{\left(\mathbf{x}_{j}, y_{j}\right)_{j=1, \ldots, N}\right\} \ldots$

$$
\mathcal{L}(\mathbf{a}, b)=\prod_{j=1}^{N} \frac{1}{\sqrt{2 \pi} \sigma} \exp \left(-\frac{\left\|y_{j}-\left(\mathbf{a}^{T} \mathbf{x}_{j}+b\right)\right\|^{2}}{2 \sigma^{2}}\right)
$$

...the MLE approach selects the values of (\mathbf{a}, b) which mazimize $\mathcal{L}(\mathbf{a}, b)$

- Since $\max _{(\mathbf{a}, b)} \mathcal{L}(\mathbf{a}, b) \Leftrightarrow \max _{(\mathbf{a}, b)} \log \mathcal{L}(\mathbf{a}, b)$

$$
\log L(\mathbf{a}, b)=C-\frac{1}{2 \sigma^{2}} \sum_{j=1}^{N}\left\|y_{j}-\left(\mathbf{a}^{T} \mathbf{x}_{j}+b\right)\right\|^{2}
$$

- Hence $\max _{(\mathbf{a}, b)} \mathcal{L}(\mathbf{a}, b) \Leftrightarrow \min _{(\mathbf{a}, b)} \sum_{j=1}^{N}\left\|y_{j}-\left(\mathbf{a}^{T} \mathbf{x}_{j}+b\right)\right\|^{2} \ldots$

Statistical Approach to Linear Regression

- Properties of the MLE estimator: convergence of $\|\alpha-\mathbf{a}\|$?
- Confidence intervals for coefficients,
- Tests procedures to assess if model "fits" the data,

- Bayesian approaches: instead of looking for one optimal fit (a, b) juggle with a whole density on (a, b) to make decisions
- etc.

A few words on polynomials in higher dimensions

A few words on polynomials in higher dimensions

- For d variables, that is for points $\mathbf{x} \in \mathbb{R}^{d}$,
- the space of polynomials on these variables up to degree p is generated by

$$
\left\{\mathbf{x}^{\mathbf{u}} \mid \mathbf{u} \in \mathbb{N}^{d}, \mathbf{u}=\left(u_{1}, \cdots, u_{d}\right), \sum_{i=1}^{d} u_{i} \leq p\right\}
$$

where the monomial $\mathbf{x}^{\mathbf{u}}$ is defined as $x_{1}^{u_{1}} x_{2}^{u_{2}} \cdots x_{d}^{u_{d}}$

- Recurrence for dimension of that space: $\operatorname{dim}_{p+1}=\operatorname{dim}_{p}+\binom{p+1}{d+p}$
- For $d=20$ and $p=5,1+20+210+1540+8855+42504>50.000$

Problem with polynomial interpolation in high-dimensions is the explosion of relevant variables (one for each monomial)

Geometric Perspective

Back to Basics

- Recall the problem:

$$
\begin{gathered}
X=\left[\begin{array}{cccc}
1 & 1 & \cdots & 1 \\
\vdots & \vdots & \cdots & \vdots \\
\mathbf{x}_{1} & \mathbf{x}_{2} & \cdots & \mathbf{x}_{N} \\
\vdots & \vdots & \cdots & \vdots
\end{array}\right] \in \mathbb{R}^{d+1 \times N} \\
\text { and } \\
Y=\left[\begin{array}{lll}
y_{1} & \cdots & y_{N}
\end{array}\right] \in \mathbb{R}^{N}
\end{gathered}
$$

- We look for α such that $\alpha^{T} X \approx Y$.

Back to Basics

- If we transpose this expression we get $X^{T} \alpha \approx Y^{T}$,

$$
\left[\begin{array}{cccc}
1 & x_{1,1} & \cdots & x_{d, 1} \\
1 & x_{1,2} & \cdots & x_{d, 2} \\
\vdots & \vdots & \vdots & \vdots \\
1 & x_{1, k} & \cdots & x_{d, k} \\
\vdots & \vdots & \vdots & \vdots \\
1 & x_{1, N} & \cdots & x_{d, N}
\end{array}\right] \times\left[\begin{array}{c}
\alpha_{0} \\
\vdots \\
\alpha_{d}
\end{array}\right]=\left[\begin{array}{c}
y_{1} \\
\vdots \\
y_{2} \\
\vdots \\
y \\
\vdots \\
y_{N}
\end{array}\right]
$$

- Using the notation $\mathbf{Y}=Y^{T}, \mathbf{X}=X^{T}$ and \mathbf{X}_{k} for the $(k+1)^{\text {th }}$ column of \mathbf{X},

$$
\sum_{k=0}^{d} \alpha_{k} \mathbf{X}_{k} \approx \mathbf{Y}
$$

- Note how the \mathbf{X}_{k} corresponds to all values taken by the $k^{\text {th }}$ variable.
- Problem: approximate/reconstruct Reconstructing $\mathbf{Y} \in \mathbb{R}^{N}$ using $\mathbf{X}_{0}, \mathbf{X}_{1}, \cdots, \mathbf{X}_{d} \in \mathbb{R}^{N}$?

Linear System

```
Reconstructing Y }\in\mp@subsup{\mathbb{R}}{}{N}\mathrm{ using }\mp@subsup{\mathbf{X}}{0}{},\mp@subsup{\mathbf{X}}{1}{},\cdots,\mp@subsup{\mathbf{X}}{d}{}\mathrm{ vectors of }\mp@subsup{\mathbb{R}}{}{N}\mathrm{ .
```

- Our ability to approximate \mathbf{Y} depends implicitly on the space spanned by $\mathbf{X}_{0}, \mathbf{X}_{1}, \cdots, \mathbf{X}_{d}$

Consider the observed vector in \mathbb{R}^{N} of predicted values

Linear System

```
Reconstructing Y }\in\mp@subsup{\mathbb{R}}{}{N}\mathrm{ using }\mp@subsup{\mathbf{X}}{0}{},\mp@subsup{\mathbf{X}}{1}{},\cdots,\mp@subsup{\mathbf{X}}{d}{}\mathrm{ vectors of }\mp@subsup{\mathbb{R}}{}{N}\mathrm{ .
```

- Our ability to approximate \mathbf{Y} depends implicitly on the space spanned by $\mathbf{X}_{0}, \mathbf{X}_{1}, \cdots, \mathbf{X}_{d}$

Plot the first regressor $\mathbf{X}_{\mathbf{0}} \ldots$

Linear System

```
Reconstructing Y }\in\mp@subsup{\mathbb{R}}{}{N}\mathrm{ using }\mp@subsup{\mathbf{X}}{0}{},\mp@subsup{\mathbf{X}}{1}{},\cdots,\mp@subsup{\mathbf{X}}{d}{}\mathrm{ vectors of }\mp@subsup{\mathbb{R}}{}{N}\mathrm{ .
```

- Our ability to approximate \mathbf{Y} depends implicitly on the space spanned by $\mathbf{X}_{0}, \mathbf{X}_{1}, \cdots, \mathbf{X}_{d}$

Assume the next regressor $\mathbf{X}_{\mathbf{1}}$ is colinear to $\mathbf{X}_{\mathbf{0}} \ldots$

Linear System

```
Reconstructing Y }\in\mp@subsup{\mathbb{R}}{}{N}\mathrm{ using }\mp@subsup{\mathbf{X}}{0}{},\mp@subsup{\mathbf{X}}{1}{},\cdots,\mp@subsup{\mathbf{X}}{d}{}\mathrm{ vectors of }\mp@subsup{\mathbb{R}}{}{N}\mathrm{ .
```

- Our ability to approximate \mathbf{Y} depends implicitly on the space spanned by $\mathbf{X}_{0}, \mathbf{X}_{1}, \cdots, \mathbf{X}_{d}$

and so is $\mathbf{X}_{\mathbf{2}} \ldots$

Linear System

```
Reconstructing Y }\in\mp@subsup{\mathbb{R}}{}{N}\mathrm{ using }\mp@subsup{\mathbf{X}}{0}{},\mp@subsup{\mathbf{X}}{1}{},\cdots,\mp@subsup{\mathbf{X}}{d}{}\mathrm{ vectors of }\mp@subsup{\mathbb{R}}{}{N}\mathrm{ .
```

- Our ability to approximate \mathbf{Y} depends implicitly on the space spanned by $\mathbf{X}_{0}, \mathbf{X}_{1}, \cdots, \mathbf{X}_{d}$

Very little choices to approximate $\mathbf{Y} .$.

Linear System

```
Reconstructing Y }\in\mp@subsup{\mathbb{R}}{}{N}\mathrm{ using }\mp@subsup{\mathbf{X}}{0}{},\mp@subsup{\mathbf{X}}{1}{},\cdots,\mp@subsup{\mathbf{X}}{d}{}\mathrm{ vectors of }\mp@subsup{\mathbb{R}}{}{N}\mathrm{ .
```

- Our ability to approximate \mathbf{Y} depends implicitly on the space spanned by $\mathbf{X}_{0}, \mathbf{X}_{1}, \cdots, \mathbf{X}_{d}$

Suppose $\mathbf{X}_{\mathbf{2}}$ is actually not colinear to $\mathbf{X}_{\mathbf{0}}$.

Linear System

```
Reconstructing Y }\in\mp@subsup{\mathbb{R}}{}{N}\mathrm{ using }\mp@subsup{\mathbf{X}}{0}{},\mp@subsup{\mathbf{X}}{1}{},\cdots,\mp@subsup{\mathbf{X}}{d}{}\mathrm{ vectors of }\mp@subsup{\mathbb{R}}{}{N}\mathrm{ .
```

- Our ability to approximate \mathbf{Y} depends implicitly on the space spanned by $\mathbf{X}_{0}, \mathbf{X}_{1}, \cdots, \mathbf{X}_{d}$

This opens new ways to reconstruct Y.

Linear System

```
Reconstructing Y }\in\mp@subsup{\mathbb{R}}{}{N}\mathrm{ using }\mp@subsup{\mathbf{X}}{0}{},\mp@subsup{\mathbf{X}}{1}{},\cdots,\mp@subsup{\mathbf{X}}{d}{}\mathrm{ vectors of }\mp@subsup{\mathbb{R}}{}{N}\mathrm{ .
```

- Our ability to approximate \mathbf{Y} depends implicitly on the space spanned by $\mathbf{X}_{0}, \mathbf{X}_{1}, \cdots, \mathbf{X}_{d}$

When $\mathbf{X}_{\mathbf{0}}, \mathbf{X}_{\mathbf{1}}, \mathbf{X}_{\mathbf{2}}$ are linearly independent,

Linear System

```
Reconstructing Y }\in\mp@subsup{\mathbb{R}}{}{N}\mathrm{ using }\mp@subsup{\mathbf{X}}{0}{},\mp@subsup{\mathbf{X}}{1}{},\cdots,\mp@subsup{\mathbf{X}}{d}{}\mathrm{ vectors of }\mp@subsup{\mathbb{R}}{}{N}\mathrm{ .
```

- Our ability to approximate \mathbf{Y} depends implicitly on the space spanned by $\mathbf{X}_{0}, \mathbf{X}_{1}, \cdots, \mathbf{X}_{d}$

\mathbf{Y} is in their span since the space is of dimension 3

Linear System

$$
\text { Reconstructing } \mathbf{Y} \in \mathbb{R}^{N} \text { using } \mathbf{X}_{0}, \mathbf{X}_{1}, \cdots, \mathbf{X}_{d} \text { vectors of } \mathbb{R}^{N} .
$$

- Our ability to approximate \mathbf{Y} depends implicitly on the space spanned by $\mathbf{X}_{0}, \mathbf{X}_{1}, \cdots, \mathbf{X}_{d}$

The dimension of that space is $\operatorname{Rank}(\mathbf{X})$, the rank of \mathbf{X}

$$
\boldsymbol{\operatorname { R a n k }}(\mathbf{X}) \leq \min (d+1, N)
$$

Linear System

Three cases depending on Rank X and d, N

1. $\operatorname{Rank} \mathbf{X}<N . d+1$ column vectors do not span \mathbb{R}^{N}

- For arbitrary Y, there is no solution to $\alpha^{T} X=Y$

2. $\boldsymbol{R a n k} \mathbf{X}=N$ and $d+1>N$, too many variables span the whole of \mathbb{R}^{N}

- infinite number of solutions to $\alpha^{T} X=Y$.

3. $\mathbf{R a n k} \mathbf{X}=N$ and $d+1=N$, \# variables $=\#$ observations

- Exact and unique solution: $\alpha=\mathbf{X}^{-1} \mathbf{Y}$ we have $\alpha^{T} X=Y$

$$
\text { In most applications, } d+1 \neq N \text { so we are either in case } 1 \text { or } 2
$$

Case 1: $\boldsymbol{R a n k} \mathbf{X}<N$

- no solution to $\alpha^{T} X=Y$ (equivalently $\mathbf{X} \alpha=\mathbf{Y}$) in general case.
- What about the orthogonal projection of \mathbf{Y} on the image of \mathbf{X}

- Namely the point $\hat{\mathbf{Y}}$ such that

$$
\hat{\mathbf{Y}}=\underset{\mathbf{u} \in \operatorname{span} \mathrm{X}_{0}, \mathrm{X}_{1}, \cdots, \mathrm{X}_{d}}{\operatorname{argmin}}\|\mathbf{Y}-\mathbf{u}\| .
$$

Case 1: $\boldsymbol{R a n k} \mathbf{X}<N$

Lemma 1. $\left\{\mathbf{X}_{0}, \mathbf{X}_{1}, \cdots, \mathbf{X}_{d}\right\}$ is a 1.i. family $\Leftrightarrow \mathbf{X}^{T} \mathbf{X}$ is invertible

Case 1: $\boldsymbol{R a n k} \mathbf{X}<N$

- Computing the projection $\hat{\omega}$ of a point ω on a subspace V is well understood.
- In particular, if $\left(\mathbf{X}_{0}, \mathbf{X}_{1}, \cdots, \mathbf{X}_{d}\right)$ is a basis of $\operatorname{span}\left\{\mathbf{X}_{0}, \mathbf{X}_{1}, \cdots, \mathbf{X}_{d}\right\} \ldots$
(that is $\left\{\mathbf{X}_{0}, \mathbf{X}_{1}, \cdots, \mathbf{X}_{d}\right\}$ is a linearly independent family)
... then $\left(\mathbf{X}^{T} \mathbf{X}\right)$ is invertible and ...

$$
\hat{\mathbf{Y}}=\mathbf{X}\left(\mathbf{X}^{T} \mathbf{X}\right)^{-1} \mathbf{X}^{T} \mathbf{Y}
$$

- This gives us the α vector of weights we are looking for:

$$
\hat{\mathbf{Y}}=\mathbf{X} \underbrace{\left(\mathbf{X}^{T} \mathbf{X}\right)^{-1} \mathbf{X}^{T} \mathbf{Y}}_{\hat{\alpha}}=\mathbf{X} \hat{\alpha} \approx \mathbf{Y} \text { or } \hat{\alpha}^{T} X=Y
$$

- What can go wrong?

Case 1: $\boldsymbol{R a n k} \mathbf{X}<N$

- If $\mathbf{X}^{T} \mathbf{X}$ is invertible,

$$
\hat{\mathbf{Y}}=\mathbf{X}\left(\mathbf{X}^{T} \mathbf{X}\right)^{-1} \mathbf{X}^{T} \mathbf{Y}
$$

- If $\mathbf{X}^{T} \mathbf{X}$ is not invertible... we have a problem.
- If $\mathbf{X}^{T} \mathbf{X}$'s condition number

$$
\frac{\lambda_{\max }\left(\mathbf{X}^{T} \mathbf{X}\right)}{\lambda_{\min }\left(\mathbf{X}^{T} \mathbf{X}\right)},
$$

is very large, a small change in \mathbf{Y} can cause dramatic changes in α.

- In this case the linear system is said to be badly conditioned...
- Using the formula

$$
\hat{\mathbf{Y}}=\mathbf{X}\left(\mathbf{X}^{T} \mathbf{X}\right)^{-1} \mathbf{X}^{T} \mathbf{Y}
$$

might return garbage as can be seen in the following Matlab example.

Case 2: $\operatorname{Rank} \mathbf{X}=N$ and $d+1>N$

high-dimensional low-sample setting

- III-posed inverse problem, the set

$$
\left\{\alpha \in \mathbb{R}^{d} \quad \mid \quad \mathbf{X} \alpha=\mathbf{Y}\right\}
$$

is a whole vector space. We need to choose one from many admissible points.

- When does this happen?
- High-dimensional low-sample case (DNA chips, multimedia etc.)
- How to solve for this?
- Use something called regularization.

A practical perspective: Colinearity and Overfitting

A Few High-dimensions Low sample settings

- DNA chips are very long vectors of measurements, one for each gene

- Task: regress a health-related variable against gene expression levels

Image:http://bioinfo.cs.technion.ac.il/projects/Kahana-Navon/DNA-chips.htm

A Few High-dimensions Low sample settings

- Task: regress probability that this is an email against bag-of-words

Correlated Variables

- Suppose you run a real-estate company.

- For each apartment you have compiled a few hundred predictor variables, e.g.
- distances to conv. store, pharmacy, supermarket, parking lot, etc.
- distances to all main locations in Kansai
- socio-economic variables of the neighboorhood
- characteristics of the apartment
- Some are obviously correlated (correlated= "almost" colinear)
- distance to Post Office / distance to Post ATM
- In that case, we may have some problems (Matlab example)

Overfitting

- Given d variables (including constant variable), consider the least squares criterion

$$
L_{d}\left(\alpha_{1}, \cdots, \alpha_{d}\right)=\sum_{i=1}^{j}\left(y_{j}-\sum_{i=1}^{d} \alpha_{i} x_{i, j}\right)^{2}
$$

- Add any variable vector $x_{d+1, j}, j=1, \cdots, N$, and define

$$
L_{d+1}\left(\alpha_{1}, \cdots, \alpha_{d}, \alpha_{d+1}\right)=\sum_{i=1}^{j}\left(y_{j}-\sum_{i=1}^{d} \alpha_{i} x_{i, j}-\alpha_{d+1} x_{d+1, j}\right)^{2}
$$

Overfitting

- Given d variables (including constant variable), consider the least squares criterion

$$
L_{d}\left(\alpha_{1}, \cdots, \alpha_{d}\right)=\sum_{i=1}^{j}\left(y_{j}-\sum_{i=1}^{d} \alpha_{i} x_{i, j}\right)^{2}
$$

- Add any variable vector $x_{d+1, j}, j=1, \cdots, N$, and define

$$
L_{d+1}\left(\alpha_{1}, \cdots, \alpha_{d}, \alpha_{d+1}\right)=\sum_{i=1}^{j}\left(y_{j}-\sum_{i=1}^{d} \alpha_{i} x_{i, j}-\alpha_{d+1} x_{d+1, j}\right)^{2}
$$

THEN $\min _{\alpha \in \mathbb{R}^{d+1}} L_{d+1(\alpha)} \leq \min _{\alpha \in \mathbb{R}^{d}} L_{d}(\alpha)$

Overfitting

- Given d variables (including constant variable), consider the least squares criterion

$$
L_{d}\left(\alpha_{1}, \cdots, \alpha_{d}\right)=\sum_{i=1}^{j}\left(y_{j}-\sum_{i=1}^{d} \alpha_{i} x_{i, j}\right)^{2}
$$

- Add any variable vector $x_{d+1, j}, j=1, \cdots, N$, and define

$$
\begin{gathered}
L_{d+1}\left(\alpha_{1}, \cdots, \alpha_{d}, \alpha_{d+1}\right)=\sum_{i=1}^{j}\left(y_{j}-\sum_{i=1}^{d} \alpha_{i} x_{i, j}-\alpha_{d+1} x_{d+1, j}\right)^{2} \\
\text { Then } \min _{\alpha \in \mathbb{R}^{d+1}} L_{d+1(\alpha) \leq \min _{\alpha \in \mathbb{R}^{d}} L_{d}(\alpha)}^{\text {why? } L_{d}\left(\alpha_{1}, \cdots, \alpha_{d}\right)=L_{d+1}\left(\alpha_{1}, \cdots, \alpha_{d}, 0\right)}
\end{gathered}
$$

Overfitting

- Given d variables (including constant variable), consider the least squares criterion

$$
L_{d}\left(\alpha_{1}, \cdots, \alpha_{d}\right)=\sum_{i=1}^{j}\left(y_{j}-\sum_{i=1}^{d} \alpha_{i} x_{i, j}\right)^{2}
$$

- Add any variable vector $x_{d+1, j}, j=1, \cdots, N$, and define

$$
\begin{gathered}
L_{d+1}\left(\alpha_{1}, \cdots, \alpha_{d}, \alpha_{d+1}\right)=\sum_{i=1}^{j}\left(y_{j}-\sum_{i=1}^{d} \alpha_{i} x_{i, j}-\alpha_{d+1} x_{d+1, j}\right)^{2} \\
\text { Then } \min _{\alpha \in \mathbb{R}^{d+1}} L_{d+1(\alpha)} \leq \min _{\alpha \in \mathbb{R}^{d}} L_{d}(\alpha) \\
\text { why? } L_{d}\left(\alpha_{1}, \cdots, \alpha_{d}\right)=L_{d+1}\left(\alpha_{1}, \cdots, \alpha_{d}, \mathbf{0}\right)
\end{gathered}
$$

Residual-sum-of-squares goes down... but is it relevant to add variables?

Occam's razor formalization of overfitting

Minimizing least-squares (RSS) is not clever enough. We need another idea to avoid overfitting.

- Occam's razor:lex parsimoniae

- law of parsimony: principle that recommends selecting the hypothesis that makes the fewest assumptions.
one should always opt for an explanation in terms of the fewest possible causes, factors, or variables.

Advanced Regression Techniques

Quick Reminder on Vector Norms

- For a vector $\mathbf{a} \in \mathbb{R}^{d}$, the Euclidian norm is the quantity

$$
\|\mathbf{a}\|_{2}=\sqrt{\sum_{i=1}^{d} a_{i}^{2}}
$$

- More generally, the q-norm is for $q>0$,

$$
\|\mathbf{a}\|_{q}=\left(\sum_{i=1}^{d}\left|a_{i}\right|^{q}\right)^{\frac{1}{q}}
$$

- In particular for $q=1$,

$$
\|\mathbf{a}\|_{1}=\sum_{i=1}^{d}\left|a_{i}\right|
$$

- In the limit $q \rightarrow \infty$ and $q \rightarrow 0$,

$$
\|\mathbf{a}\|_{\infty}=\max _{i=1, \cdots, d}\left|a_{i}\right| . \quad\|\mathbf{a}\|_{0}=\#\left\{i \mid a_{i} \neq 0\right\}
$$

Tikhonov Regularization '43 - Ridge Regression '62

- Tikhonov's motivation: solve ill-posed inverse problems by regularization
- If $\min _{\alpha} L(\alpha)$ is achieved on many points... consider

$$
\min _{\alpha} L(\alpha)+\lambda\|\alpha\|_{2}^{2}
$$

- We can show that this leads to selecting

$$
\hat{\alpha}=\left(\mathbf{X}^{T} \mathbf{X}+\lambda I_{d+1}\right)^{-1} \mathbf{X} \mathbf{Y}
$$

- The condition number has changed to

$$
\frac{\lambda_{\max }\left(\mathbf{X}^{T} \mathbf{X}\right)+\lambda}{\lambda_{\min }\left(\mathbf{X}^{T} \mathbf{X}\right)+\lambda} .
$$

Subset selection : Exhaustive Search

- Following Ockham's razor, ideally we would like to know for any value p

$$
\min _{\alpha,\|\alpha\|_{0}=p} L(\alpha)
$$

- \rightarrow select the best vector α which only gives weights to p variables.
- \rightarrow Find the best combination of p variables.

> Practical Implementation

- For $p \leq n,\binom{n}{p}$ possible combinations of p variables.
- Brute force approach: generate $\binom{n}{p}$ regression problems and select the one that achieves the best RSS.

$$
\text { Impossible in practice with moderately large } n \text { and } p \ldots\binom{30}{5}=150.000
$$

Subset selection : Forward Search

Since the exact search is intractable in practice, consider the forward heuristic

- In Forward search:
- define $I_{1}=\{0\}$.
- given a set $I_{k} \subset\{0, \cdots, d\}$ of k variables, what is the most informative variable one could add?
\triangleright Compute for each variable i in $\{0, \cdots, d\} \backslash I_{k}$

$$
t_{i}=\min _{\left(\alpha_{k}\right)_{k \in I_{k}}, \alpha} \sum_{j=1}^{N}\left(y_{j}-\left(\sum_{k \in I_{k}} \alpha_{k} x_{k, j}+\alpha x_{i, j}\right)\right)^{2}
$$

\triangleright Set $I_{k+1}=I_{k} \cup\left\{i^{\star}\right\}$ for any i^{\star} such that $i^{\star}=\min t_{i}$.
$\triangleright k=k+1$ until desired number of variablse

Subset selection : Backward Search

... or the backward heuristic

- In Backward search:
- define $I_{d}=\{0,1, \cdots, n\}$.
- given a set $I_{k} \subset\{0, \cdots, d\}$ of k variables, what is the least informative variable one could remove?
\triangleright Compute for each variable i in I_{k}

$$
\left.t_{i}=\min _{\left(\alpha_{k}\right)_{k \in I_{k} \backslash\{i\}}} \sum_{j=1}^{N} \| y_{j}-\left(\sum_{k \in I_{k} \backslash\{i\}} \alpha_{k} x_{k, j}\right)\right)^{2}
$$

\triangleright Set $I_{k-1}=I_{k} \backslash\left\{i^{\star}\right\}$ for any i^{\star} such that $i^{\star}=\max t_{i}$.
$\triangleright k=k-1$ until desired number of variables

Subset selection : LASSO

Naive Least-squares

$$
\min _{\alpha} L(\alpha)
$$

Best fit with p variables (Occam!)

$$
\min _{\alpha,\|\alpha\|_{0}=p} L(\alpha)
$$

Tikhonov regularized Least-squares

$$
\min _{\alpha} L(\alpha)+\lambda\|\alpha\|_{2}^{2}
$$

LASSO (least absolute shrinkage and selection operator)

$$
\min _{\alpha} L(\alpha)+\lambda\|\alpha\|_{1}
$$

