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Last Lecture : Regression

e Mentioned the Maximum Likelihood perspective on LS-regression

N
1
log L(a,b) = C — 2722”% — (a’x; +b)|*.
j=1

7

L(a,b)

e Provided a geometric perspective on LS regression through projections

Least Squares Regression

0

Projecting the vector of observed predicted variable in
span{ vectors of observed predictor variables 4+ constant vector}

e Many issues with LS regression... Hence advanced regression techniques

o Ridge Regression
o Subset selection
o Lasso

e we will talk about these in 3 lectures when discussing sparsity.
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Today

e Classification, differences with regression
e Binary classification
e Linear classification algorithms

o Logistic Regression

o ldeally, Linear Discriminant Analysis, but no time.
o Perceptron rule

o Support Vector Machine

e Once this is done, we will move on to more theory in next lecture about
statistical learning theory.
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Classification
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Starting Again With Regression

Many observations of the same data type, with label

e we still consider a database {x1,--- ,xx},
_1131,3'
e cach datapoint x; is represented as a vector of features x; = $27
ZCd,j

e To each observation is associated a label y;...

o If y; € R, we have regression
o If y; € S where § is a finite set, multiclass classification.
o If § only has two elements, binary classification.

SML-2015




Examples

Multiclass Classification

e Classify images of fruits into fruit category

e Classify images of handwritten digits into digits from 0 to 9
e Classify musical tunes, books, movies into genres

e Classify proteins into functional classes

Img source
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http://fab.cba.mit.edu/classes/MIT/864.05/people/dgreensp/

Examples

Binary Classification

e Using elementary measurements, guess if someone has or not a disease that is

o difficult to detect at an early stage
o difficult to measure directly (fetus)

e Classify chemical compounds into toxic / nontoxic
e Classify a passenger as suspect/not suspect
e Classify body tumor as begign/malign to detect cancer

® cic.
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Why use a new name?

Solve a classification problem < build a function f : R? — S
To do so, we need to evaluate the accuracy of a function f,

Namely, for each j, can we measure whether f(x;) ~ y;?
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Why use a new name?

Solve a classification problem < build a function f : RY -+ S
for each j, can we measure whether f(x;) ~ ;7

In conventional regression - linear regression

e We have used consistently Z;.V:lﬂf(xj) — y;||? to select a good f.
e R is a metric space... 137.354 JPY — 36.000 JPY|| = 1354
o sense of closeness between possible answers

e R is a totally ordered set... 36.000 JPY <37.354 JPY

o notion of total hierarchy between possible answers

SML-2015
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Why use a new name?

Solve a classification problem < build a function f : RY -+ S
for each j, can we measure whether f(x;) ~ ;7

In discrete labels in classification

e No distance nor order is available on §

o No order for musical genres jazz > bossa-nova ?
o No distance between fruits |kiwi — bananal|?
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This creates challenges to quantify how f(x;) is close to y;
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Digits recognition

e Use a database such as

paired with the corresponding labels,
(2,6,0,1,9,2,7,1,4,0,5,4,3,0,8,4,3,9,4,7).

to build an automated recognition system for handwritten digits.

e useful for post office, check recognition, tax office, etc..

SML-2015
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Labels are usually unordered and without a metric

e The set of labelsis S ={0,1,2,3,4,5,6,7,8,9}

e Yet there is no distance/order in S for this task.

e Suppose the image given to the recognition system is

v

e Although |5 — 6| < |0 — 6/, the answer 5 is not better than 0.

SML-2015
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Labels are usually unordered and without a metric

e The set of labelsis S ={0,1,2,3,4,5,6,7,8,9}

e Yet there is no distance/order in S for this task.

e Suppose the image given to the recognition system is

v

e Although |5 — 6| < |0 — 6/, the answer 5 is not better than 0.

If all mistakes are equally wrong, then we consider the 0/1 loss:

) g 4t 0if f(z;) = yj,
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Sometimes discrete labels are regression variables in disguise

e Suppose the task is to guess the rating of a movie

|Priceky Moo Tie Sinr Rading WPAR  Cenve Arenaity wE

| SRRRI T B independent e oz |
SRR T Po13 Comedy Have B
SRR WA Telavision  Mow B &
* Viseries Disc N Television  mow o=
: Series Disc KR Talavision v B'x
SRERE UR  Drama Mowr 0%
SRR R Drama [ Oz
ok & 4 & 4 R indepandent MNow a0z
ORERE R Carmady Hawe Oox
ShERLT A oms o oz |
SRRRY T Pe13 Dama Poowr 0%
(3% & & Tl R Remuncy Mo Ox
DRWRT A Orema Howr BE
[oF & & & &% R Drama Haw 3%

SRERWE B brama Howe 0%

e User inputs are in S = {1,2,3,4,5}
e In this case standard regression techniques may be applied because,

o the natural metric ||5 — 3|| is meaningful
o the final user does not mind getting fractional predictions (e.g. 3.85)
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Binary Classification

card S = 2.

Usually S = {0,1} or S={-1,1} or S={—, 4} or S={Y, N}
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Data

e Data: vectors xq, X2, X3, - , Xp.
e To infer a “yes/no” rule, we need the correct answer for each vector.

e \We consider thus a set of pairs of (vector,bit)

o \
1

.. .CUi d

“training set” =<¢ | x; = |"?| e R, y, € {0,1} >

\ | L] i=1..N /

e For illustration purposes only we will consider vectors in the plane, d = 2.
e Points are easier to represent in 2 dimensions than in 20.000...

e The ideas for d > 3 are exactly the same.
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Binary Classification Separation Surfaces for Vectors

What is a classification rule?
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Binary Classification Separation Surfaces for Vectors

Classification rule = a partition of R into two sets
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Binary Classification Separation Surfaces for Vectors

This partition is recovered as the level set of a function on R?
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Binary Classification Separation Surfaces for Vectors

Namely, {x € R?|f(x) > 0} and {x € RY|f(x) <0}
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Classification Separation Surfaces for Vectors

What kind of function? any. For instance, a curved line
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Classification Separation Surfaces for Vectors

Even more simple: using straight lines and halfspaces.
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Linear Classifiers

e Straight lines (hyperplanes when d > 2) are the simplest type of classifiers.
e A hyperplane H,; is a set in R? defined by

o a normal vector ¢ € R4
o a constant b € R. as

H.p={xc R c'x = b}

o Letting b vary we can ‘“slide” the hyperplane across R?

C
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Linear Classifiers

o Exactly like lines in the plane, hypersurfaces divide R into two halfspaces,

{xERd\chzb}U{xeRd|ch<b}:Rd

e Linear classifiers attribute the “yes” and “no” answers given arbitrary ¢ and b.

NO

YES

e Assuming we only look at halfspaces for the decision surface...
...how to choose the “best” (c*,b*) given a training sample?
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Linear Classifiers

e This specific question,

“training set” {(x; € R%, y, € {0,1}) . = “hest” ¥, b*

1=
has different answers. Depends on the meaning of “best” ?:
e Linear Discriminant Analysis (or Fisher's Linear Discriminant);
e Logistic regression maximum likelihood estimation;
e Perceptron, a one-layer neural network;

e Support Vector Machine, the result of a convex program

® cic.
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Classification Separation Surfaces for Vectors

Given two sets of points...
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Classification Separation Surfaces for Vectors

It is sometimes possible to separate them perfectly
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Classification Separation Surfaces for Vectors

® O

O ® O

O ° ®
® O
O O

Each choice might look equivalently good on the training set,
but it will have obvious impact on new points
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Classification Separation Surfaces for Vectors
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Linear classifier, some degrees of freedom
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Linear classifier, some degrees of freedom
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Linear classifier, some degrees of freedom

Specially close to the border of the classifier
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Linear classifier, some degrees of freedom
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Linear classifier, some degrees of freedom

For each different technique, different results, different performance.
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A few linear classifiers:
(1) Linear Discriminant Analysis
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Reminder: Gaussian Multivariate Density

Gaussian Multivariate Density

A multivariate (= for vectors) generalization of the Gaussian density for x € R

SML-2015

A very common density to characterize random vectors.

38



SML-2015

Reminder: Gaussian Multivariate Density

Gaussian Multivariate Density

x € R~ N (i, X), % positive definite

0

Density of x is (271.)6}/2|2|e—(x—,u)TZ_l(x—,u)
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Reminder:

Gaussian Multivariate Density
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Linear Discriminant Analysis in a Nutshell

e Assume points from two classes, 0 and 1 are generated by two Gaussian
densities

e Estimate ML covariance X, 221 and mean pg and 1 for each class

1 1 T
Ho =~ Z Xy EOZW Z (Xi = po)(xi — po)

i|y;=0 i|y;=0
1 1 e
M1 = E -|Z X, 21 = m '|21(Xi — p1)(X; — py)
t|y;= t|y;=

https://onlinecourses.science.psu.edu/stat557 /book /export /html /45
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https://onlinecourses.science.psu.edu/stat557/book/export/html/45

Linear Discriminant Analysis

e Define the two resulting densities, © = 0 or 1,

1

e(x_lii)TEi_l(x_Mi)
2m) /2| %]

pi(x) = (

e Decide that x belongs to 1 if p1(x) > po(x) and 0 otherwise.
e In practice (after some computations), this means that:

o x belongs to class 1 if
(= po) 2o (= po) + I [Zo| = (& — p) "7 (@ — ) =[5y > T

o 0 otherwise

SML-2015
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Linear Discriminant Analysis

e |f one assumes that > = 1 = >, the decision becomes a simple dot-product:
wlhe > T

where
w = %" (1 — po)-

e Using the assumption that 0 and 1 have been generated with the same
covariance, we get a linear boundary.

SML-2015 43
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A few linear classifiers:
(2) Logistic Regression
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Regression does not work

e Consider the toy classification example:

o Points x; are taken randomly between -10 and 50.

o The label

Yj =

OifXj<7T,
1ifXj>7T.

e What happens if we feed this directly to regression?... matlab demo

SML-2015
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How can we adapt regression? logistic map

e |ogistic map :

0.9

0.8}

0.7F

0.6

0.5

0.4}

0.3

0.2

0.1

o forany z, 0 < g(z) <1

SML-2015

e 1
9(2) = 7= =
e#+1 e *+1
1/(exp(—x)+1)
4 3 —é -1 0 1 2 é 4
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How can we adapt regression? logistic map

Basic ldea

e Rather than find the best ¢ and b such that

fx))=c'x;+b =~ y;€{0,1}

e |logistic regression considers instead the best ¢ and b such that

1
e~ (e +b) 4 1

go f(x;) = ~y; € {0,1}.

e if for a new point x,

o go f(x) > 1/2, guess that the class is 1
o go f(x) < 1/2, guess that the class is 0
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Probabilistic Interpretation of Logistic Regression

e Suppose there is a probability density p(X,Y’) on couples (x,y) € R? x {0, 1}.

e Suppose for now that we know p.

e T he ratio
p(Y =1|X =x)

") =V =0X =)
is called the odds-ratio of a given point x.

e Obviously,

o if r(x) > 1, then it is more likely that y = 1 than y = 0.
o if 7(x) < 1, then one is tempted to guess that y = 0 than y = 1.
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Probabilistic Interpretation of Logistic Regression

e In other words...

p(Y =1|X =x) > (0 then y = 1 is the likely answer
< 0 then y = 0 is the likely answer

e Logistic regression assumes that the log-odds ratio follows a linear relationship

e This implies that the decision surface is linear.

Note that Logistic Regression
assumes a model only for the log-odds ratio,
not for the whole probability p
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Probabilistic Interpretation of Logistic Regression
e Since p(Y =0|X =x) =1—p(Y = 1|X = x), we hence have

p(Y =1[X =x)
1 —p(Y =1|X =x)

log =clx+1b

e which in turn implies

1
e~ (cTx+b) +1

p(Y =1|X =x) = = g(c'x +b).

Predictor variables contribute linearly
to the increase/decrease of the probability that y = 1.

SML-2015
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Estimation of ¢ and b through Maximum Likelihood

e Flip coin, setting p(y = 1) = p and p(y = 0) = 1 — p for binary random
variable y,

o Likelihood of a draw y knowing that probability is p,
pY(1—p)~?
e |n the context of logistic regresion, p depends on c,b and x; for each point,

N
L(e,b) = [ o(e™x; +b)¥(1 — g(eTx; + b)) 7%
j=1
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Estimation of ¢ and b through Maximum Likelihood

e Using again the log transformation,

log L(c,b) Zyj log g(c’'x; + b) + (1 — y;) log(1 — g(c'x; +b)).
7=1

e Maximizing this log-likelihood is equivalent to

maéx log L(c,b) < maxz:y7 cl x; +b) —log(1 + eCij+b).

e No closed form solution for this unfortunately... need efficient optimization.

e For datasets of reasonable size, Newton method for instance.

SML-2015
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Estimation of ¢ and b through Maximum Likelihood

Compare...

.5 (1+sign(x-m))

I I I I )
10 20 30 40 50
X

...with

1/(exp(~(8.9576 x+(~28.1031)))+1)

0.8r

0.61

oS

0.4r

0.2r
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A few linear classifiers:
(3) Perceptron Rule
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Estimation of c and b through iterative updates

e lterative algorithm that considers each data point successively.
e Here we consider S = {—1,1}

e Start from any arbitrary estimate w = [%].

e Loop over j until w does not change for a while...

o Consider a point [x; | and his label y;.
o Do u; = sign(w? | |) and y; match?
o it not, set w + w + p(y; — uy) [ % |.

e Not much more to add, better see in practice.

Data points and separation surface

_—2 -15 -1 -0.5 0 0.5 1 15 2
X
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A few linear classifiers:
(4) Support Vector Machine
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A criterion to select a linear classifier: the margin ?
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A criterion to select a linear classifier: the margin ?
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A criterion to select a linear classifier: the margin ?
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A criterion to select a linear classifier: the margin ?
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A criterion to select a linear classifier: the margin ?
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Largest Margin Linear Classifier ?
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Support Vectors with Large Margin
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In equations

e We assume (for the moment) that the data are linearly separable, i.e., that
there exists (w,b) € R? x R such that:

wix;+b>0 ify, =1,
WTXi—l—b<O ifyz-:—l.

e Next, we give a formula to compute the margin as a function of w.

e Obviously, for any t € R,
Hw,b — Htw,tb

e Thus w and b are defined up to a multiplicative constant.

e \We need to take care of this in the definition of the margin

SML-2015
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How to find the largest separating hyperplane?

For the linear classifier f(x) = w?

X + b,

consider the interstice defined by the hyperplanes:

o f(x)=wlix+b=+1
o f(x)=wlx+b=—1

_ A
W.X+b—\0 \A

W.X+b=+1

\
\

O w.x

\
\
+b=-1 /V\\ \

/

e Consider x; and x5 such that x5 — x; is parallel to w.

SML-2015
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The margin is 2/||w/||

e Margin = 2/||w||: the points x; and x5 satisfy:

WTX1—|—b:O,
WTX2—|—b: 1.

e By subtracting we get w! (xo — x;) = 1, and therefore:

where v is by definition the margin.

SML-2015
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All training points should be on the appropriate side

e For positive examples (y; = 1) this means:

WTX@—I—[)Zl

e For negative examples (y; = —1) this means:

WTXZ'—I—b S —1

e in both cases:
Vi=1,...,n, yi(WTxH—b)Zl

SML-2015
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Finding the optimal hyperplane

e Find (w,b) which minimize:

lw]J?

under the constraints:

SML-2015

Vi=1,....,n, y,(W'x;+b)—1>0.

This is a classical quadratic program on R%+!
linear constraints - quadratic objective
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Another interpretation: Convex Hulls ?

go back to 2 sets of points that are linearly separable
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Another interpretation: Convex Hulls
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Linearly separable = convex hulls do not intersect
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Another interpretation: Convex Hulls
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Find two closest points, one in each convex hull
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Another interpretation: Convex Hulls

The SVM = bisection of that segment
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Another interpretation: Convex Hulls

support vectors = extreme points of the faces on which the two points lie

SML-2015
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The non-linearly separable case for SVM's

(when convex hulls intersect)
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What happens when the data is not linearly separable?

SML-2015

75



What happens when the data is not linearly separable?
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What happens when the data is not linearly separable?
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What happens when the data is not linearly separable?

SML-2015
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Soft-margin SVM ?

e Find a trade-off between large margin and few errors.

e Mathematically:

m;n{ ! 5 +C X errors(f)}

margin(f)

e (' is a parameter

SML-2015
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Soft-margin SVM formulation ?
e The margin of a labeled point (x,y) is
margin(x,y) =y (WTx — b)

e [he error is

o 0 if margin(x,y) > 1,
o 1 — margin(x,y) otherwise.

e The soft margin SVM solves:

: 2 1
E 1—v. |
mll?{HWH +C : max{0, Y; (W X; + b)}

e c(u,y) =max{0,1 — yu} is known as the hinge loss.
o c(wlx;+b,y,) associates a mistake cost to the decision w, b for example x;.

SML-2015
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