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Previous Lecture : Classification

• Classification: mapping objects onto S where |S| < ∞.

• Binary classification: answers to yes/no questions

• Linear classification algorithms: split the yes/no zones with a hyperplane

Yes = {cTx+ b ≥ 0} , No = {cTx+ b < 0}

• How to select c, b given a dataset?

◦ Linear Discriminant Analysis (multivariate Gaussians)
◦ Logistic Regression (classification from a linear regression viewpoint)
◦ Perceptron rule (iterative, random update rule)
◦ brief introduction to Support Vector Machine (optimal margin classifier)
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Today

• Usual steps when using ML algorithms

◦ Define problem (classification? regression? multi-class?)
◦ Gather data
◦ Choose representation for data to build a database
◦ Choose method/algorithm based on training set
◦ Choose/estimate parameters
◦ Run algorithm on new points, collect results
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Today

• Usual steps when using ML algorithms

◦ Define problem (classification? regression? multi-class?)
◦ Gather data
◦ Choose representation for data to build a database
◦ Choose method/algorithm
◦ Choose/estimate parameters based on training set
◦ Run algorithm on new points, collect results

◦ ... did I overfit?
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Probabilistic Framework
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General Framework

• Couples of observations, (x, y) appear in nature.

• These observations are
x ∈ R

d, y ∈ S

• S ⊂ R, that is S could be R, R+, {1, 2, 3, . . . , L}, {0, 1}

• Sometimes only x is visible. We want to guess the most likely y for that x.

• Example 1 x: Height ∈ R , y: Gender ∈ {M,F}

X is 164cm tall, is X a male or a female?

• Example 2 x: Height ∈ R , y: Weight ∈ R.

X is 164cm tall, how many kilos does X weight?
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Estimating the relationship between x and y

• To provide a guess ⇔ estimate a function f : Rd → S such that

f(x) ≈ y.
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Estimating the relationship between x and y

• To provide a guess ⇔ estimate a function f : Rd → S such that

f(x) ≈ y.

• Ideally, f(x) ≈ y should apply both to

◦ couples (x, y) we have observed in the training set
◦ couples (x, y) we will observe... (guess y from x)
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Probabilistic Framework

• We assume that each observation (x, y) arises as an

◦ independent,
◦ identically distributed,

random sample from the same probability law.
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Probabilistic Framework

• We assume that each observation (x, y) arises as an

◦ independent,
◦ identically distributed,

random sample from the same probability law.

• This probability P on R
d × S has a density,

p(X = x, Y = y).
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Probabilistic Framework

• We assume that each observation (x, y) arises as an

◦ independent,
◦ identically distributed,

random sample from the same probability law.

• This probability P on R
d × S has a density,

p(X = x, Y = y).

• This also provides us with the marginal probabilities for x and y:

p(Y = y) =

∫

Rd

p(X = x, Y = y)dx

p(X = x) =

∫

S

p(X = x, Y = y)dy
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Probabilistic Framework

• Assuming that p exists is fundamental in statistical learning theory.

p(X = x, Y = y).

• What happens to learning problems if we know p?..
(in practice, this will never happen, we never know p).

• If we know p, learning problems become trivial.

(≈ running a marathon on a motorbike)
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Example 1: S = {M,F}, Height vs Gender
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Example 2: S = R
+, Height vs Weight
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Probabilistic Framework

Conditional probability (or density)

p(A,B) = p(A|B)p(B)

• Suppose:
p(X = 184cm, y = M) = 0.015

p(y = M) = 0.5

What is p(X = 184cm | y = M)?

◦ 1. 0.15
◦ 2. 0.03
◦ 3. 0.5
◦ 4. 0.0075
◦ 5. 0.2
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Probabilistic Framework

Bayes Rule

p(A|B) =
p(B|A)p(A)

p(B)

• Suppose:
p(X = 184cm | y = M) = 0.03

p(y = M) = 0.5

p(X = 184) = 0.02

What is p(y = M |X = 184)?

◦ 1. 0.6
◦ 2. 0.04
◦ 3. 0.75
◦ 4. 0.8
◦ 5. 0.2
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Loss, Risk and Bayes Decision
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Building Blocks: Loss (1)

• A loss is a function S × R → R+ designed to quantify mistakes,

how good is the prediction f(x) given that the true answer is y?
m

How small is l(y, f(x))?

Examples

• S = {0, 1}

◦ 0/1 loss: l(a, b) = δa 6=b =

{

1 if a 6= b

0 if a = b

• S = R

◦ Squared euclidian distance l(a, b) = (a− b)2

◦ norm l(a, b) = ‖a− b‖q, 0 ≤ q ≤ ∞
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Building Blocks: Risk (2)

• The Risk of a predictor f with respect to loss l is

R(f) = Ep[l(Y,f(X))] =

∫

Rd×S

l(y,f(x))p(x, y)dxdy

• Risk = average loss of f on all possible couples (x, y),

weighted by the probability density.

Risk(f) measures the performance of f w.r.t. l and p.

• Remark: a function f with low risk can make very big mistakes for some x
as long as the probability p(x) of x is small.
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A lower bound on the Risk? Bayes Risk

• Since l ≥ 0, R(f) ≥ 0.

• Consider all possible functions Rd → S, usually written (Rd)S.

• The Bayes risk is the quantity

R∗ = inf
f∈(Rd)S

R(f) = inf
f∈(Rd)S

Ep[l(Y,f(X))]

• Ideal classifier would have Bayes risk.
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Bayes Classifier : S = {0, 1}, l is the 0/1 loss.

Let’s write: η(x) = p(Y = 1|X = x).

• Define the following rule:

gB(x) =

{

1, if η(x) ≥ 1
2,

0 otherwise.

where

The Bayes classifier achieves the Bayes Risk.

Theorem 1. R(gB) = R∗.
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Bayes Classifier : S = {0, 1}, l is the 0/1 loss.

• Chain rule of conditional probability p(A,B) = p(B)p(A|B)

• Bayes rule

p(A|B) =
p(B|A)p(A)

p(B)

• A simple way to compute η:

η(x) = p(Y = 1|X = x) =
p(Y = 1,X = x)

p(X = x)

=
p(X = x|Y = 1)p(Y = 1)

p(X = x)

=
p(X = x|Y = 1)p(Y = 1)

p(X = x|Y = 1)p(Y = 1) + p(X = x|Y = 0)p(Y = 0)
.
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Bayes Classifier : S = {0, 1}, l is the 0/1 loss.
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in addition, p(Y = 1) = 0.4871. As a consequence
p(Y = 0) = 1− 0.4871 = 0.5129
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Bayes Classifier : S = {0, 1}, l is the 0/1 loss.
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Bayes Estimator : S = R, l is the 2-norm

• Consider the following rule:

gB(x) = E[Y |X = x] =

∫

R

y p(Y = y|X = x)dy

Here again, the Bayes estimator achieves the Bayes Risk.

Theorem 2. R(gB) = R∗.
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Bayes Estimator : S = R, l is the 2-norm

• Using Bayes rule again,

f⋆(x) = E[Y |X = x] =

∫

R

y p(Y = y|X = x)dy

=

∫

R

y
p(X = x|Y = y)p(Y = y)

p(X = x)
dy

=

∫

R

y
p(X = x|Y = y)p(Y = y)

∫

R
p(X = x|Y = u)p(Y = u)du

dy

=

∫

R
y p(X = x|Y = y)p(Y = y)dy
∫

R
p(X = x|Y = y)p(Y = y)dy
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In practice: No p, Only Finite Samples
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What can we do?

• If we know the probability p, Bayes estimator would be impossible to beat.

• In practice, the only thing we can use is a training set,

{(xi, yi)}i=1,··· ,n.

• For instance, a list of Heights, gender

163 .0000 F
170.0000 F
175.3000 M
184.0000 M
175.0000 M
172.5000 F
153.5000 F
164.0000 M
163.0000 M
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Approximating Risk

• For any function f , we cannot compute its true risk R(f),

R(f) = Ep[l(Y,f(X))]

because we do not know p

• Instead, we can consider the empirical Risk Remp
n , defined as

Remp
n (f) =

1

n

n∑

i=1

l(yi,f(xi))

• The law of large numbers tells us that for any given f

Remp
n (f) → R(f).
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Relying on the empirical risk

As sample size n grows, the empirical risk behaves like the real risk

• It may thus seem like a good idea to minimize directly the empirical risk.

• The intuition is that

◦ since a function f such that R(f) is low is desirable,
◦ since Remp

n (f) converges to R(f) as n → ∞,

why not look directly for any function f such that Remp
n (f) is low?

• Typically, in the context of classification with 0/1 loss, find a function such that

Remp
n (f) =

1

n

n∑

i=1

δyi 6=f(xi)

...is low.
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A flawed intuition

• However, focusing only on Remp
n is not viable.

• Many ways this can go wrong...
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A flawed intuition

• Consider the function defined as

h(x) =







y1, if x = x1,

y2, if x = x2,
...

yn, if x = xn,

0 otherwise..

• Since, Remp
n (h) = 1

n

∑n

i=1 δyi 6=h(xi) =
1
n

∑n

i=1 δyi 6=yi = 0, h minimizes Remp
n .

• However, h always answers 0, except for a few points.

• In practice, we can expect R(h) to be much higher, equal to P (Y = 1) in fact.
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Here is what this function would predict on the

Height/Gender Problem

150 160 170 180 190 200
F

M

Overfitting is probably the most frequent mistake made by ML practitioners.
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Ideas to Avoid Overfitting

• Our criterion Remp
n (g) only considers a finite set of points.

• A function g defined on R
d is defined on an infinite set of points.

A few approaches to control overfitting

• Restrict the set of candidates

min
g∈G

Remp
n (g).

• Penalize “undesirable” functions

min
g∈G

Remp
n (g) + λ‖g‖2

Are there theoretical tools which justify such approaches?
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Bounds
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Flow of a learning process in Machine Learning

• Assumption 1. existence of a probability density p for (X,Y ).

• Assumption 2. points are observed i.i.d. following this probability density.
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Flow of a learning process in Machine Learning

• Assumption 1. existence of a probability density p for (X,Y ).

• Assumption 2. points are observed i.i.d. following this probability density.

Roadmap

• Get a random training sample {(xj, yj)}i=1,··· ,n (training set)

• Choose a class of functions G (method or model)

• Choose gn in G such that Remp
n (gn) is low (estimation algorithm)
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Flow of a learning process in Machine Learning

• Assumption 1. existence of a probability density p for (X,Y ).

• Assumption 2. points are observed i.i.d. following this probability density.

Roadmap

• Get a random training sample {(xj, yj)}i=1,··· ,n (training set)

• Choose a class of functions G (method or model)

• Choose gn in G such that Remp
n (gn) is low (estimation algorithm)

Next... use gn in practice
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Flow of a learning process in Machine Learning

Yet, you may want to have a partial answer to these questions

• How good would be gB if we knew the real probability p?

• what about R(gn)?

• What’s the gap between them, R(gn)−R(gB)?

• Is the estimation algorithm reliable? how big is Remp(gn)− infg∈G R
emp
n (g)?

• how big is Remp
n (gn)− infg∈G R(g)?
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Excess Risk

• In the general case gB /∈ G.

• Hence, by introducing g⋆ as a function achieving the lowest risk in G,

R(g⋆) = inf
g∈G

R(g),

we decompose

R(gn)−R(gB) = [R(gn)−R(g⋆)] + [R(g⋆)−R(gB)]
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Excess Risk

• In the general case gB /∈ G.

• Hence, by introducing g⋆ as a function achieving the lowest risk in G,

R(g⋆) = inf
g∈F

R(g),

we decompose

R(gn)−R(gB) = [R(gn) − R(g⋆)]
︸ ︷︷ ︸

Estimation Error

+ [R(g⋆) − R(gB)]
︸ ︷︷ ︸

Approximation Error

• Estimation error is random, Approximation error is fixed.

• In the following we focus on the estimation error.
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Types of Bounds

Error Bounds

R(gn) ≤ Remp
n (gn) + C(n,G).
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Types of Bounds

Error Bounds

R(gn) ≤ Remp
n (gn) + C(n,G).

Error Bounds Relative to Best in Class

R(gn) ≤ R(g⋆) + C(n,G).
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Types of Bounds

Error Bounds

R(gn) ≤ Remp
n (gn) + C(n,G).

Error Bounds Relative to Best in Class

R(gn) ≤ R(g⋆) + C(n,G).

Error Bounds Relative to the Bayes Risk

R(gn) ≤ R(gB) + C(n,G).
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Error Bounds / Generalization Bounds

R(gn)−Remp
n (gn)
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What is Overfitting?

• Overfitting is the idea that,

◦ given n training points sampled randomly,
◦ given a function gn estimated from these points,
◦ we may have...

R(gn) ≫ Remp
n (gn).
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What is Overfitting?

• Overfitting is the idea that,

◦ given n training points sampled randomly,
◦ given a function gn estimated from these points,
◦ we may have...

R(gn) ≫ Remp
n (gn).

• Question of interest:

P [R(gn)−Remp
n (gn) > ε] =?

• From now on, we consider the classification case, namely G : Rd → {0, 1}.
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Alleviating Notations

• More convenient to see a couple (x, y) as a realization of Z, namely

zi = (xi, yi), Z = (X,Y ).

• We define the loss class

F = {f : z = (x, y) → δg(x) 6=y, g ∈ G},

• with the additional notations

Pf = E[f(X,Y )], Pnf =
1

n

n∑

i=1

f(xi, yi),

where we recover
Pnf = Remp

n (g), Pf = R(g)]
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Empirical Processes

For each f ∈ F , Pnf is a random variable which depends on n realizations of Z.

• If we consider all possible functions f ∈ F , we obtain

The set of random variables {Pnf}f∈F is called an
Empirical measure indexed by F .

• A branch of mathematics studies explicitly the convergence of {Pf −Pnf}f∈F ,

This branch is known as Empirical process theory .
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Hoeffding’s Inequality

• Recall that for a given g and corresponding f ,

R(g)−Remp(g) = Pf − Pnf = E[f(Z)]−
1

n

n∑

i=1

f(zi),

which is simply the difference between the expectation and the empirical
average of f(Z).

• The strong law of large numbers says that

P

(

lim
n→∞

E[f(Z)]−
1

n

n∑

i=1

f(zi) = 0

)

= 1.
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Hoeffding’s Inequality

• A more detailed result is

Theorem 3 (Hoeffding). Let Z1, · · · , Zn be n i.i.d random variables with

f(Z) ∈ [a, b]. Then, ∀ε,

P [|Pnf − Pf | > ε] ≤ 2e
− 2nε2

(b−a)2 .
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