Statistical Machine Learning, Part I

Statistical Learning Theory (II)

mcuturi@i.kyoto-u.ac.jp

Previous Lecture : Probabilistic Setting, Loss, Risk

- We observe the outcomes of a pair of random variables (X, Y).
- Probability \boldsymbol{P} for couples (\mathbf{x}, y) on $\mathbb{R}^{d} \times \mathcal{S}$, with density p

$$
\boldsymbol{p}(X=\mathbf{x}, Y=y) .
$$

- Loss l to quantify by $l(y, f(\mathbf{x}))$ the accuracy of a guess $f(\mathbf{x})$ for y, e.g.

$$
\mathcal{S}=\{0,1\}: l(a, b)=\delta_{a \neq b}, \quad \mathcal{S}=\mathbb{R}: l(a, b)=\|a-b\|^{2}
$$

- Risk $_{l, p}(g)$: average loss for a given function g :

$$
\boldsymbol{R}(g)=\mathbb{E}_{\boldsymbol{p}}[l(Y, g(X))]=\int_{\mathbb{R}^{d} \times \mathcal{S}} l(y, g(\mathbf{x})) p(\mathbf{x}, y) d \mathbf{x} d y
$$

Previous Lecture: Bayes Risk, Bayes Classifier/Estimator

- Bayes Risk: lowest risk over all possible functions

$$
R^{*}=\inf _{g \in\left(\mathbb{R}^{d}\right) \mathcal{S}} \boldsymbol{R}(g)=\inf _{g \in\left(\mathbb{R}^{d}\right) \mathcal{S}} \mathbb{E}_{p}[l(Y, g(X))]
$$

- Bayes Classifier (when $\mathcal{S}=\{0,1\}$):

$$
f_{B}(\mathbf{x})=\left\{\begin{array}{l}
1, \text { if } p(Y=1 \mid X=\mathbf{x}) \geq \frac{1}{2}, \\
0 \text { otherwise }
\end{array}\right.
$$

- Bayes Estimator (when $\mathcal{S}=\mathbb{R}$):

$$
f_{B}(\mathbf{x})=\mathbb{E}[Y \mid X=\mathbf{x}]=\int_{\mathbb{R}} y p(Y=y, X=\mathbf{x}) d y
$$

The Bayes classifier/estimator achieve the Bayes Risk for classification with $0-1$ loss / regression with squared error $R\left(f_{B}\right)=R^{*}$

Previous Lecture: Empirical Risk

- In practice, no access to \boldsymbol{P}. The only thing we can use is a training set,

$$
\left\{\left(\mathbf{x}_{i}, y_{i}\right)\right\}_{i=1, \cdots, n}
$$

- Assuming the sampling is i.i.d, a counterpart to the Risk is

$$
\boldsymbol{R}_{n}^{\mathrm{emp}}(g)=\frac{1}{n} \sum_{i=1}^{n} l\left(\boldsymbol{y}_{i}, \boldsymbol{g}\left(\mathrm{x}_{i}\right)\right) \ldots \text { compare with } \boldsymbol{R}(g)=\mathbb{E}_{\boldsymbol{p}}[l(\boldsymbol{Y}, g(\boldsymbol{X}))]
$$

- What is overfitting?
- Choose g_{n}, the best function in a class of functions \mathcal{G} w.r.t $R_{n}^{\text {emp }}$,

$$
\boldsymbol{R}_{n}^{\mathrm{emp}}\left(g_{n}\right)=\min _{g \in \mathcal{F}} \boldsymbol{R}_{n}^{\mathrm{emp}}(g)
$$

- find out (later!) that, unfortunately, $\boldsymbol{R}_{n}^{\mathrm{emp}}\left(g_{n}\right) \ll \boldsymbol{R}\left(g^{\star}\right)$.
overfitting: rely blindly on R_{n}^{emp} when looking for a function with low R.

Previous Lecture: Excess Risk

- For any candidate set of functions \mathcal{G},
- We introduce g^{\star} as a function achieving the lowest risk in \mathcal{G},

$$
R\left(g^{\star}\right)=\inf _{g \in \mathcal{G}} R(g),
$$

- Note that g^{\star} depends on p, which we do not have access to.
- Useful however to decompose

$$
R\left(g_{n}\right)-R\left(f_{B}\right)=\underbrace{\left[\boldsymbol{R}\left(g_{n}\right)-\boldsymbol{R}\left(\boldsymbol{g}^{\star}\right)\right]}_{\text {Estimation Error }}+\underbrace{\left[\boldsymbol{R}\left(\boldsymbol{g}^{\star}\right)-\boldsymbol{R}\left(\boldsymbol{f}_{B}\right)\right]}_{\text {Approximation Error }}
$$

Bounds

An overdue definition

Definition of "Empirical"

1. derived from or relating to experiment and observation rather than theory
2. Guided by practical experience and not theory

$$
\boldsymbol{R}_{n}^{\mathrm{emp}}(g)=\frac{1}{n} \sum_{i=1}^{n} l\left(y_{i}, g\left(\mathbf{x}_{i}\right)\right) \text { vs. } \boldsymbol{R}(g)=\mathbb{E}_{\boldsymbol{p}}[l(\boldsymbol{Y}, g(X))]
$$

Alleviating Notations in the Binary Case

- More convenient to see a couple (\mathbf{x}, y) as a realization of Z, namely

$$
\mathbf{z}_{i}=\left(\mathbf{x}_{i}, y_{i}\right), Z=(X, Y)
$$

Alleviating Notations in the Binary Case

- More convenient to see a couple (\mathbf{x}, y) as a realization of Z, namely

$$
\mathbf{z}_{i}=\left(\mathbf{x}_{i}, y_{i}\right), Z=(X, Y)
$$

- Define the loss class

$$
\mathcal{F}=\left\{f: \mathbf{z}=(\mathbf{x}, y) \rightarrow \delta_{g(\mathbf{x}) \neq y}, g \in \mathcal{G}\right\},
$$

Alleviating Notations in the Binary Case

- More convenient to see a couple (\mathbf{x}, y) as a realization of Z, namely

$$
\mathbf{z}_{i}=\left(\mathbf{x}_{i}, y_{i}\right), Z=(X, Y)
$$

- Define the loss class

$$
\mathcal{F}=\left\{f: \mathbf{z}=(\mathbf{x}, y) \rightarrow \delta_{g(\mathbf{x}) \neq y}, g \in \mathcal{G}\right\},
$$

- use simpler notations:

$$
P f=\mathbb{E}_{p}[f(X, Y)], \quad P_{n} f=\frac{1}{n} \sum_{i=1}^{n} f\left(\mathbf{x}_{i}, y_{i}\right),
$$

where we recover

$$
P f=\boldsymbol{R}(g), \quad P_{n} f=\boldsymbol{R}_{n}^{\operatorname{emp}}(g)
$$

Empirical Processes

For each $f \in \mathcal{F}, P_{n} f$ is a random variable which depends on a random sample $\left\{\mathbf{z}_{i}=\left(\mathbf{x}_{i}, y_{i}\right)\right\}_{i=1 \cdots, n}$ of $Z=(X, Y)$.

Empirical Processes

For each $f \in \mathcal{F}, P_{n} f$ is a random variable
which depends on a random sample $\left\{\mathbf{z}_{i}=\left(\mathbf{x}_{i}, y_{i}\right)\right\}_{i=1 \cdots, n}$ of $Z=(X, Y)$.

- P is a deterministic function of functions in \mathcal{F}.
- P_{n} is a random function of functions in \mathcal{F}.

Empirical Processes

For each $f \in \mathcal{F}, P_{n} f$ is a random variable
which depends on a random sample $\left\{\mathbf{z}_{i}=\left(\mathbf{x}_{i}, y_{i}\right)\right\}_{i=1 \cdots, n}$ of $Z=(X, Y)$.

- P is a deterministic function of functions in \mathcal{F}.
- P_{n} is a random function of functions in \mathcal{F}.
- If we consider P_{n} on all possible functions $f \in \mathcal{F}$, we obtain

> The set of random variables $\left\{P_{n} f\right\}_{f \in \mathcal{F}}$ is called an Empirical measure indexed by \mathcal{F}.

Empirical Processes

For each $f \in \mathcal{F}, P_{n} f$ is a random variable which depends on a random sample $\left\{\mathbf{z}_{i}=\left(\mathbf{x}_{i}, y_{i}\right)\right\}_{i=1 \cdots, n}$ of $Z=(X, Y)$.

- P is a deterministic function of functions in \mathcal{F}.
- P_{n} is a random function of functions in \mathcal{F}.
- If we consider P_{n} on all possible functions $f \in \mathcal{F}$, we obtain

> The set of random variables $\left\{P_{n} f\right\}_{f \in \mathcal{F}}$ is called an Empirical measure indexed by \mathcal{F}.

- A branch of mathematics studies explicitly the convergence of $\left\{P f-P_{n} f\right\}_{f \in \mathcal{F}}$,

This branch is known as Empirical process theory

Hoeffding's Inequality

- Recall that for a given g and corresponding f,

$$
R(g)-R^{\mathrm{emp}}(g)=P f-P_{n} f=\mathbb{E}[f(Z)]-\frac{1}{n} \sum_{i=1}^{n} f\left(\mathbf{z}_{i}\right)
$$

\rightarrow difference between the expectation and the empirical average of $f(Z)$.

- The strong law of large numbers says that

$$
P\left(\lim _{n \rightarrow \infty}\left(\mathbb{E}[f(Z)]-\frac{1}{n} \sum_{i=1}^{n} f\left(\mathbf{z}_{i}\right)\right)=0\right)=1
$$

Hoeffding's Inequality (1963)

Theorem 1 (Hoeffding). Let Z_{1}, \cdots, Z_{n} be n i.i.d random variables with $f(Z) \in[a, b]$. Then, $\forall \varepsilon>0$,

$$
P\left(\left|P_{n} f-P f\right|>\varepsilon\right) \leq 2 e^{-\frac{2 n \varepsilon^{2}}{(b-a)^{2}}} .
$$

- From

$$
P\left(\lim _{n \rightarrow \infty}\left(\mathbb{E}[f(Z)]-\frac{1}{n} \sum_{i=1}^{n} f\left(\mathbf{z}_{i}\right)\right)=0\right)=1 .
$$

we get

$$
P\left(\left|\mathbb{E}[f(Z)]-\frac{1}{n} \sum_{i=1}^{n} f\left(\mathbf{z}_{i}\right)\right|>\varepsilon\right) \leq 2 e^{-\frac{2 n \varepsilon^{2}}{(b-a)^{2}}} .
$$

- Hoeffding's inequality is a concentration inequality.

Some Intuitions: the Height/Gender problem

In 3 dimensions

Height/Gender

Easier to see in 2 dimensions, same content.

Height/Gender

Assume for a minute that we known these two curves.

Height/Gender

For any function f : Height \mapsto Gender we can compute the risk

Height/Gender

Risk for Heaviside functions $f(x)=\delta_{x>\tau}$

Height/Gender

The risk is minimal for the thresholded function with $\tau \approx 171.5$

Height/Gender

which matches our picture of the Bayes classifier and the

$$
\eta(x)=P(Y=1 \mid X=\mathbf{x}) \text { function }
$$

Height/Gender

Unfortunately, we do not have access to this,

Height/Gender

But rather this...

Height/Gender

or this...

Height/Gender

or even this... we assume our samples are random.

Height/Gender

Hoeffding's Inequality: $P\left(\left|P_{n} f-P f\right|>\varepsilon\right) \leq 2 e^{-\frac{2 n \varepsilon^{2}}{(b-a)^{2}}}$.

Hoeffding's Inequality

Let's check on Matlab what this means

Hoeffding's Inequality

Hoeffding's Inequality

Hoeffding's Inequality

Hoeffding's Inequality

Hoeffding's Inequality

Hoeffding's Inequality

Some Proofs

Theorem 2 (Hoeffding). Let Z_{1}, \cdots, Z_{n} be n i.i.d random variables with $f(Z) \in[a, b]$. Then, $\forall \varepsilon>0$,

$$
P\left(\left|P_{n} f-P f\right|>\varepsilon\right) \leq 2 e^{-\frac{2 n \varepsilon^{2}}{(b-a)^{2}}} .
$$

Theorem 3 (Markov). Let $X \geq 0$ be a non-negative random variable in \mathbb{R}, then

$$
P(X \geq t) \leq \frac{\mathbb{E}[X]}{t} .
$$

Proof technique

- Markov can be generalized (with ϕ nondecreasing function)

$$
P(X \geq \varepsilon)=P(\phi(X) \geq \phi(\varepsilon)) \leq \frac{\mathbb{E}[\phi(X)]}{\phi(t)}
$$

- Cramér-Chernoff: Use $\phi(u)=e^{\lambda u}$. We get $P(X \geq \varepsilon) \leq e^{-\lambda \varepsilon} \mathbb{E}\left[e^{\lambda X}\right]$.
- $\psi_{X}(\lambda)=\log \mathbb{E}\left[e^{\lambda} X\right]$. We have $P(X \geq \varepsilon) \leq e^{-\lambda \varepsilon+\psi_{X}(\lambda)}$.
- Idea: for a given ε, take $\psi_{X}^{\star}(\varepsilon)=\max _{\lambda} \lambda \varepsilon-\psi_{X}(\lambda)$. Chernoff's bound!
- If X is Gaussian $(\sigma), \psi_{X}(\lambda)=\frac{\lambda^{2}}{2 \sigma^{2}}$. $\psi_{X}^{\star}(\varepsilon)=\varepsilon^{2} / 2 \sigma^{2}$.
- If $\psi_{X}(\lambda) \leq v \frac{\lambda^{2}}{2}$, then X is said to be sub-Gaussian of factor v.
- Hoeffding's lemma: if X is bounded between $[a, b]$ and has zero mean, that factor is $v=(b-a)^{2} / 4$.
- Hoeffding bound: if X_{i} independent, bounded $\left[a_{i}, b_{i}\right]$, then for $S=\sum_{i=1}^{n}\left[X_{i}-\mathbb{E} X_{i}\right]$,

$$
\psi_{S}(\lambda) \leq \frac{\lambda^{2}}{2} \sum_{i}\left(b_{i}-a_{i}\right)^{2} / 4
$$

Inverting Hoeffding's Inequality

- Naturally, if

$$
P\left(\left|P_{n} f-P f\right|>\varepsilon\right) \leq 2 e^{-\frac{2 n \varepsilon^{2}}{(b-a)^{2}}} .
$$

- then for $\delta>0$,

$$
P\left(\left|P_{n} f-P f\right|>(b-a) \sqrt{\frac{\log \frac{2}{\delta}}{2 n}}\right) \leq \delta .
$$

- which is also interpreted as, with probability at least $1-\delta$,

$$
\left|P_{n} f-P f\right| \leq(b-a) \sqrt{\frac{\log \frac{2}{\delta}}{2 n}}
$$

Interpretation in terms of Risk

- Functions f take values between $a=0$ and $b=1 . b-a=1$ for all inequalities.
- For any function g, and any δ, with probability at least $1-\delta$,

$$
R(g) \leq R_{n}^{\mathrm{emp}}(g)+\sqrt{\frac{\log \frac{2}{\delta}}{2 n}}
$$

- Note that the probability at least statement refers to samples of size n.

However...

- This result looks nice.
- It is, however, not useful directly... why?
- Get data first, estimate $g_{n} \ldots$ gap between $R\left(g_{n}\right)$ and $R_{n}\left(g_{n}\right)$?
- Define \hat{g} as $\hat{g}\left(\mathbf{x}_{i}\right)=y_{i}$ and $\hat{g}=0$ everywhere else.
- Of course, $R(\hat{g}) \gg R_{n}^{\mathrm{emp}}(\hat{g}) \stackrel{\text { def }}{=} 0$.
- Why cannot we apply directly Hoeffding's bound in this case?

Uniform Bounds

- We focus now on uniform deviations on the function class,

$$
\sup _{f \in \mathcal{F}}\left\{P f-P_{n} f\right\},
$$

- Since we know that whatever the function g_{n} we choose with the sample,

$$
R\left(g_{n}\right)-R_{n}^{\mathrm{emp}}\left(g_{n}\right) \leq \sup _{g \in \mathcal{G}}\left\{R(g)-R_{n}^{\mathrm{emp}}(g)\right\}=\sup _{f \in \mathcal{F}}\left\{P f-P_{n} f\right\}
$$

Obtaining Uniform Bounds

- Simple example with two functions f_{1} and f_{2}.
- Define the two sets of n-uples,

$$
C_{1}=\left\{\left\{\left(\mathbf{x}_{1}, y_{1}\right), \cdots,\left(\mathbf{x}_{n}, y_{n}\right)\right\} \mid P f_{1}-P_{n} f_{1}>\varepsilon\right\}
$$

and

$$
C_{2}=\left\{\left\{\left(\mathbf{x}_{1}, y_{1}\right), \cdots,\left(\mathbf{x}_{n}, y_{n}\right)\right\} \mid P f_{2}-P_{n} f_{2}>\varepsilon\right\}
$$

- These sets are the "bad" sets for which empirical risk is much lower than the real risk.

Obtaining Uniform Bounds

- For each, we have the Hoeffing's inequalities (no absolute value), that

$$
P\left(C_{1}\right) \leq \delta, P\left(C_{2}\right) \leq \delta \text { where } \delta=e^{-2 n \varepsilon^{2}}
$$

- Note that whenever a n-uple is in $C_{1} \cup C_{2}$, then either

$$
P f_{1}-P_{n} f_{1}>\varepsilon \text { or } P f_{2}-P_{n} f_{2}>\varepsilon .
$$

- Of course, $P\left(C_{1} \cup C_{2}\right) \leq P\left(C_{1}\right)+P\left(C_{2}\right) \leq 2 \delta$.
- Thus, with probability smaller than 2δ at least one of f_{1} or f_{2} will be such that $P f_{1}-P_{n} f_{1}>\varepsilon$.

Generalizing to N functions

- Consider f_{1}, \cdots, f_{N} functions.
- Define the corresponding sets of n-uples, C_{1}, \cdots, C_{N} with ε fixed.
- Of course,

$$
P\left(C_{1} \cup C_{2} \cup \cdots \cup C_{N}\right) \leq \sum_{i=1}^{N} P\left(C_{i}\right)
$$

- Use now Hoeffding's inequality

$$
\begin{aligned}
P\left(\exists f \in\left\{f_{1}, \cdots, f_{N}\right\} \mid P f-P_{n} f>\varepsilon\right) & =P\left(\bigcup_{i=1}^{N} C_{i}\right) \\
& \leq \sum_{i=1}^{N} P\left(C_{i}\right) \leq N \delta=N e^{-2 n \varepsilon^{2}}
\end{aligned}
$$

Error bound for finite families of functions

- We thus have that for any family of N functions,

$$
P\left(\sup _{f \in \mathcal{F}} P f-P_{n} f \geq \varepsilon\right) \leq N e^{-2 n \varepsilon^{2}},
$$

- or equivalently, that if $\mathcal{G}=\left\{g_{1}, \cdots, g_{N}\right\}$, with probability at least $1-\delta$,

$$
\forall g \in \mathcal{G}, \quad R(g) \leq R_{n}(g)+\sqrt{\frac{\log N+\log \frac{1}{\delta}}{2 n}}
$$

Estimation bound for finite families of functions

- Recall that g^{\star} is a function in \mathcal{G} such that $R\left(g^{\star}\right)=\min _{g \in \mathcal{G}} R(g)$.
- The inequality

$$
R\left(g^{\star}\right) \leq R_{n}^{\mathrm{emp}}\left(g^{\star}\right)+\sup _{g \in \mathcal{G}}\left(R(g)-R_{n}^{\mathrm{emp}}(g)\right)
$$

- combined with $R_{n}^{\mathrm{emp}}\left(g^{\star}\right)-R_{n}^{\mathrm{emp}}\left(g_{n}\right) \geq 0$ by definition of g_{n}, we get

$$
\begin{array}{r}
R\left(g_{n}\right)=R\left(g_{n}\right)-R\left(g^{\star}\right)+R\left(g^{\star}\right) \leq \underbrace{R_{n}^{\mathrm{emp}}\left(g^{\star}\right)-R_{n}^{\mathrm{emp}}\left(g_{n}\right)}_{\geq 0}+R\left(g_{n}\right)-R\left(g^{\star}\right)+R\left(g^{\star}\right) \\
\leq 2 \sup _{g \in \mathcal{G}}\left|R(g)-R_{n}^{\mathrm{emp}}(g)\right|+R\left(g^{\star}\right)
\end{array}
$$

- Hence, with probability at least $1-\delta$,

$$
R\left(g_{n}\right) \leq R\left(g^{\star}\right)+2 \sqrt{\frac{\log N+\log \frac{2}{\delta}}{2 n}}
$$

Hoeffding's bound for countable families of functions

- Suppose now that we have a countable family \mathcal{F}
- Suppose that we assign a number $\delta(f)>0$ to each $f \in \mathcal{F}$, which we use to set

$$
P\left(\left|P f-P_{n} f\right|>\sqrt{\frac{\log \frac{2}{\delta(f)}}{2 n}}\right) \leq \delta(f),
$$

- Using the union bound on a countable set (basic probability axiom),

$$
P\left(\exists f \in \mathcal{F}:\left|P_{n} f-P f\right|>\sqrt{\frac{\log \frac{2}{\delta(f)}}{2 n}}\right) \leq \sum_{f \in \mathcal{F}} \delta(f) .
$$

- Let us set $\delta(f)=\rho p(f)$ with $\rho>0$ and $\sum_{f \in \mathcal{F}} p(f)=1$.
- Then with probability $1-\rho$,

$$
\forall f \in \mathcal{F}, P f \leq P_{n} f+\sqrt{\frac{\log \frac{1}{p(f)}+\log \frac{1}{\rho}}{2 n}} .
$$

Hoeffding's bound for general families of functions

- Two problems:
- Most interesting families of functions are not countable.
- Defining the weights $p(f)$ is not so obvious.
- However, what really matters for a sample $\mathbf{z}_{1}, \cdots, \mathbf{z}_{n}$ is

$$
\mathcal{F}_{\mathbf{z}_{1}, \cdots, \mathbf{z}_{n}}=\left\{\left(f\left(\mathbf{z}_{1}\right), f\left(\mathbf{z}_{2}\right), \cdots, f\left(\mathbf{z}_{n}\right)\right), f \in \mathcal{F}\right\}
$$

- $\mathcal{F}_{\mathbf{z}_{1}, \cdots, \mathbf{z}_{n}}$ is a large set of binary vectors $\subset\{0,1\}^{n}$
- The more complex \mathcal{F}, the larger $\mathcal{F}_{\mathbf{z}_{1}, \cdots, \mathbf{z}_{n}}$ with maximum 2^{n} possible elements.

Definition 1 (Growth Function). The growth function of \mathcal{F} is equal to

$$
S_{\mathcal{F}}(n)=\sup _{\left(\mathbf{z}_{1}, \cdots, \mathbf{z}_{n}\right)}\left|\mathcal{F}_{\mathbf{z}_{1}, \cdots, \mathbf{z}_{n}}\right|
$$

Vapnik-Chervonenkis

Theorem 4 (Vapnik-Chervonenkis). For any $\delta>0$, with probability at least $1-\delta$,

$$
\forall g \in \mathcal{G}, R(g) \leq R_{n}(g)+2 \sqrt{2 \frac{\log S_{\mathcal{G}}(2 n)+\log \frac{2}{\delta}}{n}}
$$

Definition 2 (VC Dimension). The VC dimension of a class \mathcal{G} is the largest n such that

$$
S_{\mathcal{G}}(n)=2^{n} .
$$

Vapnik-Chervonenkis

- The VC dimension of linear classifiers in \mathbb{R}^{d} is $d+1$.

Vapnik-Chervonenkis

- Given the VC dimension h of a family \mathcal{G}, we can prove

$$
\forall g \in \mathcal{G}, R(g) \leq R_{n}(g)+2 \sqrt{2 \frac{h \log \frac{2 e n}{h}+\log \frac{2}{\delta}}{n}}
$$

Lemma 1 (Vapnik and Chervonenkis, Sauer, Shelah). Let \mathcal{G} be a class of functions with finite VC-dimension h. Then,

$$
\begin{gathered}
\forall n \in \mathbb{N}, S_{\mathcal{G}}(n) \leq \sum_{i=0}^{h}\binom{n}{i}, \\
\forall n \geq h, S_{\mathcal{G}}(n) \leq\left(\frac{e n}{h}\right)^{h} .
\end{gathered}
$$

- Combining with VC theorem, we obtain the result given above.
- Important thing: difference between true and empirical risks is at most of the order of

$$
\sqrt{\frac{h \log n}{n}}
$$

