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Previous Lecture : Probabilistic Setting, Loss, Risk

• We observe the outcomes of a pair of random variables (X,Y ).

• Probability P for couples (x, y) on R
d × S, with density p

p(X = x, Y = y).

• Loss l to quantify by l(y, f(x)) the accuracy of a guess f(x) for y, e.g.

S = {0, 1} : l(a, b) = δa 6=b, S = R : l(a, b) = ‖a− b‖2

• Riskl,p(g): average loss for a given function g:

R(g) = Ep[l(Y, g(X))] =

∫

Rd×S

l(y, g(x))p(x, y)dxdy
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Previous Lecture: Bayes Risk, Bayes Classifier/Estimator

• Bayes Risk: lowest risk over all possible functions

R∗ = inf
g∈(Rd)S

R(g) = inf
g∈(Rd)S

Ep[l(Y, g(X))]

• Bayes Classifier (when S = {0, 1}):

fB(x) =

{

1, if p(Y = 1|X = x) ≥ 1
2,

0 otherwise.

• Bayes Estimator (when S = R):

fB(x) = E[Y |X = x] =

∫

R

y p(Y = y,X = x)dy

The Bayes classifier/estimator achieve the Bayes Risk
for classification with 0− 1 loss / regression with squared error

R(fB) = R∗

SML - 2016 3



Previous Lecture: Empirical Risk

• In practice, no access to P . The only thing we can use is a training set,

{(xi, yi)}i=1,··· ,n.

• Assuming the sampling is i.i.d, a counterpart to the Risk is

Remp
n (g) =

1

n

n∑

i=1

l(yi, g(xi))... compare with R(g) = Ep[l(Y , g(X))]

• What is overfitting?

◦ Choose gn, the best function in a class of functions G w.r.t Remp
n ,

Remp
n (gn) = min

g∈F
Remp

n (g),

◦ find out (later!) that, unfortunately, Remp
n (gn) ≪ R(g⋆).

overfitting: rely blindly on Remp
n when looking for a function with low R.
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Previous Lecture: Excess Risk

• For any candidate set of functions G,

• We introduce g⋆ as a function achieving the lowest risk in G,

R(g⋆) = inf
g∈G

R(g),

• Note that g⋆ depends on p, which we do not have access to.

• Useful however to decompose

R(gn)−R(fB) = [R(gn) −R(g⋆)]
︸ ︷︷ ︸

Estimation Error

+ [R(g⋆) −R(fB)]
︸ ︷︷ ︸

Approximation Error
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Bounds
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An overdue definition

Definition of ”Empirical”

1. derived from or relating to experiment and observation rather

than theory

2. Guided by practical experience and not theory

Remp
n (g) =

1

n

n∑

i=1

l(yi, g(xi)) vs. R(g) = Ep[l(Y , g(X))]
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Alleviating Notations in the Binary Case

• More convenient to see a couple (x, y) as a realization of Z, namely

zi = (xi, yi), Z = (X,Y ).
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Alleviating Notations in the Binary Case

• More convenient to see a couple (x, y) as a realization of Z, namely

zi = (xi, yi), Z = (X,Y ).

• Define the loss class

F = {f : z = (x, y) → δg(x) 6=y, g ∈ G},
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Alleviating Notations in the Binary Case

• More convenient to see a couple (x, y) as a realization of Z, namely

zi = (xi, yi), Z = (X,Y ).

• Define the loss class

F = {f : z = (x, y) → δg(x) 6=y, g ∈ G},

• use simpler notations:

Pf = Ep[f(X,Y )], Pnf =
1

n

n∑

i=1

f(xi, yi),

where we recover
Pf = R(g), Pnf = Remp

n
(g)
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Empirical Processes

For each f ∈ F , Pnf is a random variable
which depends on a random sample {zi = (xi, yi)}i=1··· ,n of Z = (X,Y ).
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Empirical Processes

For each f ∈ F , Pnf is a random variable
which depends on a random sample {zi = (xi, yi)}i=1··· ,n of Z = (X,Y ).

• P is a deterministic function of functions in F .

• Pn is a random function of functions in F .
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Empirical Processes

For each f ∈ F , Pnf is a random variable
which depends on a random sample {zi = (xi, yi)}i=1··· ,n of Z = (X,Y ).

• P is a deterministic function of functions in F .

• Pn is a random function of functions in F .

• If we consider Pn on all possible functions f ∈ F , we obtain

The set of random variables {Pnf}f∈F is called an
Empirical measure indexed by F .
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Empirical Processes

For each f ∈ F , Pnf is a random variable
which depends on a random sample {zi = (xi, yi)}i=1··· ,n of Z = (X,Y ).

• P is a deterministic function of functions in F .

• Pn is a random function of functions in F .

• If we consider Pn on all possible functions f ∈ F , we obtain

The set of random variables {Pnf}f∈F is called an
Empirical measure indexed by F .

• A branch of mathematics studies explicitly the convergence of {Pf −Pnf}f∈F ,

This branch is known as Empirical process theory .
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Hoeffding’s Inequality

• Recall that for a given g and corresponding f ,

R(g)−Remp(g) = Pf − Pnf = E[f(Z)]−
1

n

n∑

i=1

f(zi),

→ difference between the expectation and the empirical average of f(Z).

• The strong law of large numbers says that

P

(

lim
n→∞

(

E[f(Z)]−
1

n

n∑

i=1

f(zi)

)

= 0

)

= 1.
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Hoeffding’s Inequality (1963)

Theorem 1 (Hoeffding). Let Z1, · · · , Zn be n i.i.d random variables with

f(Z) ∈ [a, b]. Then, ∀ε > 0,

P (|Pnf − Pf | > ε) ≤ 2e
− 2nε2

(b−a)2 .

• From

P

(

lim
n→∞

(

E[f(Z)]−
1

n

n∑

i=1

f(zi)

)

= 0

)

= 1.

we get

P

(∣
∣
∣
∣
∣
E[f(Z)]−

1

n

n∑

i=1

f(zi)

∣
∣
∣
∣
∣
> ε

)

≤ 2e
− 2nε2

(b−a)2 .

• Hoeffding’s inequality is a concentration inequality.
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Some Intuitions: the Height/Gender problem

160
180

200

F

M

0.005
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0.015

0.02

0.025

 

p(Height,Gender)

 

p(X,Y)

In 3 dimensions
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Height/Gender

150 160 170 180 190 200

0.005

0.01

0.015

0.02

0.025

p(X,Y=1)
p(X,Y=0)

Easier to see in 2 dimensions, same content.
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Height/Gender

150 160 170 180 190 200

0.005

0.01

0.015

0.02

0.025

p(X,Y=1)
p(X,Y=0)

Assume for a minute that we known these two curves.
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Height/Gender

150 160 170 180 190 200

0.005

0.01

0.015

0.02

0.025

p(X,Y=1)
p(X,Y=0)

For any function f : Height 7→ Gender we can compute the risk
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Height/Gender

100 120 140 160 180 200 220
0.1
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0.4

0.45

0.5

0.55

0.6

Threshold

Risk of Heaviside Functions

R
is

k

Risk for Heaviside functions f(x) = δx>τ

SML - 2016 21



Height/Gender
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0.1
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Threshold

Risk of Heaviside Functions

R
is

k

Bayes Classifier, 171.5cm

The risk is minimal for the thresholded function with τ ≈ 171.5
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Height/Gender

140 150 160 170 180 190 200 210
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0.7

0.8

0.9

1/2

 

 

η(x)

which matches our picture of the Bayes classifier and the
η(x) = P (Y = 1|X = x) function.
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Height/Gender

150 160 170 180 190 200

0.005

0.01

0.015

0.02

0.025

p(X,Y=1)
p(X,Y=0)

Unfortunately, we do not have access to this,
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Height/Gender

150 160 170 180 190 200

0.005

0.01

0.015

0.02

0.025

But rather this...
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Height/Gender

150 160 170 180 190 200

0.005

0.01

0.015

0.02

0.025

or this...
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Height/Gender

150 160 170 180 190 200

0.005

0.01

0.015

0.02

0.025

or even this... we assume our samples are random.
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Height/Gender

150 160 170 180 190 200

0.005

0.01

0.015

0.02

0.025

Hoeffding’s Inequality: P (|Pnf − Pf | > ε) ≤ 2e
− 2nε2

(b−a)2 .
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Hoeffding’s Inequality
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k

True Risk

Let’s check on Matlab what this means
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Hoeffding’s Inequality
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with n = 5 resampled 300 times
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Hoeffding’s Inequality

160 180 200

0.005

0.01

0.015

0.02

0.025

0 0.5 1

True R isk

0 0.2 0.4 0.6
0

0.2

0.4

0.6

0.8

1
Frequency of deviations

with n = 10 resampled 300 times
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Hoeffding’s Inequality
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Hoeffding’s Inequality
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Hoeffding’s Inequality

160 180 200

0.005

0.01

0.015

0.02

0.025

0 0.5 1

True R isk

0 0.2 0.4 0.6
0

0.2

0.4

0.6

0.8

1
Frequency of deviations

with n = 100 resampled 300 times

SML - 2016 34



Hoeffding’s Inequality
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Some Proofs

Theorem 2 (Hoeffding). Let Z1, · · · , Zn be n i.i.d random variables with

f(Z) ∈ [a, b]. Then, ∀ε > 0,

P (|Pnf − Pf | > ε) ≤ 2e
− 2nε2

(b−a)2 .

Theorem 3 (Markov). Let X ≥ 0 be a non-negative random variable in R, then

P (X ≥ t) ≤
E[X ]

t
.
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Proof technique

• Markov can be generalized (with φ nondecreasing function)

P (X ≥ ε) = P (φ(X) ≥ φ(ε)) ≤ E[φ(X)]
φ(t) .

• Cramér-Chernoff: Use φ(u) = eλu. We get P (X ≥ ε) ≤ e−λεE[eλX].

• ψX(λ) = logE[eλX ]. We have P (X ≥ ε) ≤ e−λε+ψX(λ).

• Idea: for a given ε, take ψ⋆X(ε) = maxλ λε− ψX(λ). Chernoff’s bound!

• If X is Gaussian (σ), ψX(λ) =
λ2

2σ2
. ψ⋆

X(ε) = ε2/2σ2.

• If ψX(λ) ≤ vλ
2

2 , then X is said to be sub-Gaussian of factor v.

• Hoeffding’s lemma: if X is bounded between [a, b] and has zero mean, that
factor is v = (b− a)2/4.

• Hoeffding bound: if Xi independent, bounded [ai, bi], then for
S =

∑n
i=1[Xi − EXi],

ψS(λ) ≤
λ2

2

∑

i

(bi − ai)
2/4.
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Inverting Hoeffding’s Inequality

• Naturally, if

P (|Pnf − Pf | > ε) ≤ 2e
− 2nε2

(b−a)2 .

• then for δ > 0,

P



|Pnf − Pf | > (b− a)

√

log 2
δ

2n



 ≤ δ.

• which is also interpreted as, with probability at least 1− δ,

|Pnf − Pf | ≤ (b− a)

√

log 2
δ

2n
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Interpretation in terms of Risk

• Functions f take values between a = 0 and b = 1. b− a = 1 for all inequalities.

• For any function g, and any δ, with probability at least 1− δ,

R(g) ≤ Remp
n (g) +

√

log 2
δ

2n

• Note that the probability at least statement refers to samples of size n.
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However...

• This result looks nice.

• It is, however, not useful directly... why?

◦ Get data first, estimate gn... gap between R(gn) and Rn(gn)?
◦ Define ĝ as ĝ(xi) = yi and ĝ = 0 everywhere else.

◦ Of course, R(ĝ) ≫ Remp
n (ĝ)

def
= 0.

• Why cannot we apply directly Hoeffding’s bound in this case?
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Uniform Bounds

• We focus now on uniform deviations on the function class,

sup
f∈F

{Pf − Pnf},

• Since we know that whatever the function gn we choose with the sample,

R(gn)− Remp
n (gn) ≤ sup

g∈G

{R(g)−Remp
n (g)} = sup

f∈F

{Pf − Pnf},
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Obtaining Uniform Bounds

• Simple example with two functions f1 and f2.

• Define the two sets of n-uples,

C1 = {{(x1, y1), · · · , (xn, yn)} |Pf1 − Pnf1 > ε}

and
C2 = {{(x1, y1), · · · , (xn, yn)} |Pf2 − Pnf2 > ε}

• These sets are the ”bad” sets for which empirical risk is much lower than the
real risk.
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Obtaining Uniform Bounds

• For each, we have the Hoeffing’s inequalities (no absolute value), that

P (C1) ≤ δ, P (C2) ≤ δ where δ = e−2nε2.

• Note that whenever a n-uple is in C1 ∪ C2, then either

Pf1 − Pnf1 > ε or Pf2 − Pnf2 > ε.

• Of course, P (C1 ∪ C2) ≤ P (C1) + P (C2) ≤ 2δ.

• Thus, with probability smaller than 2δ at least one of f1 or f2 will be such that
Pf1 − Pnf1 > ε.
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Generalizing to N functions

• Consider f1, · · · , fN functions.

• Define the corresponding sets of n-uples, C1, · · · , CN with ε fixed.

• Of course,

P (C1 ∪ C2 ∪ · · · ∪ CN) ≤

N∑

i=1

P (Ci)

• Use now Hoeffding’s inequality

P (∃f ∈ {f1, · · · , fN} |Pf − Pnf > ε) = P

(
N⋃

i=1

Ci

)

≤
N∑

i=1

P (Ci) ≤ Nδ = Ne−2nε2
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Error bound for finite families of functions

• We thus have that for any family of N functions,

P (sup
f∈F

Pf − Pnf ≥ ε) ≤ Ne−2nε2,

• or equivalently, that if G = {g1, · · · , gN}, with probability at least 1− δ,

∀g ∈ G, R(g) ≤ Rn(g) +

√

logN + log 1
δ

2n
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Estimation bound for finite families of functions

• Recall that g⋆ is a function in G such that R(g⋆) = ming∈GR(g).

• The inequality

R(g⋆) ≤ Remp
n (g⋆) + sup

g∈G

(R(g)−Remp
n (g)) ,

• combined with Remp
n (g⋆)−Remp

n (gn) ≥ 0 by definition of gn, we get

R(gn) = R(gn)−R(g
⋆)+R(g⋆) ≤ Remp

n (g⋆)−Remp
n (gn)

︸ ︷︷ ︸
≥0

+R(gn)−R(g
⋆)+R(g⋆)

≤ 2 sup
g∈G

|R(g)−Remp
n (g)|+R(g⋆)

• Hence, with probability at least 1− δ,

R(gn) ≤ R(g⋆) + 2

√

logN + log 2
δ

2n
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Hoeffding’s bound for countable families of functions

• Suppose now that we have a countable family F

• Suppose that we assign a number δ(f) > 0 to each f ∈ F , which we use to set

P



|Pf − Pnf | >

√

log 2
δ(f)

2n



 ≤ δ(f),

• Using the union bound on a countable set (basic probability axiom),

P



∃f ∈ F : |Pnf − Pf | >

√

log 2
δ(f)

2n



 ≤
∑

f∈F

δ(f).

• Let us set δ(f) = ρp(f) with ρ > 0 and
∑

f∈F p(f) = 1.

• Then with probability 1− ρ,

∀f ∈ F , Pf ≤ Pnf +

√

log 1
p(f) + log 1

ρ

2n
.
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Hoeffding’s bound for general families of functions

• Two problems:

◦ Most interesting families of functions are not countable.
◦ Defining the weights p(f) is not so obvious.

• However, what really matters for a sample z1, · · · , zn is

Fz1,··· ,zn = {(f(z1), f(z2), · · · , f(zn)) , f ∈ F}

• Fz1,··· ,zn is a large set of binary vectors ⊂ {0, 1}n

• The more complex F , the larger Fz1,··· ,zn with maximum 2n possible elements.

Definition 1 (Growth Function). The growth function of F is equal to

SF(n) = sup
(z1,··· ,zn)

|Fz1,··· ,zn|
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Vapnik-Chervonenkis

Theorem 4 (Vapnik-Chervonenkis). For any δ > 0, with probability at least

1− δ,

∀g ∈ G, R(g) ≤ Rn(g) + 2

√

2
logSG(2n) + log 2

δ

n

Definition 2 (VC Dimension). The VC dimension of a class G is the largest n

such that

SG(n) = 2n.
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Vapnik-Chervonenkis

• The VC dimension of linear classifiers in R
d is d+ 1.
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Vapnik-Chervonenkis

• Given the VC dimension h of a family G, we can prove

∀g ∈ G, R(g) ≤ Rn(g) + 2

√

2
h log 2en

h
+ log 2

δ

n

Lemma 1 (Vapnik and Chervonenkis, Sauer, Shelah). Let G be a class of

functions with finite VC-dimension h. Then,

∀n ∈ N, SG(n) ≤

h∑

i=0

(
n

i

)

,

∀n ≥ h, SG(n) ≤
(en

h

)h

.

• Combining with VC theorem, we obtain the result given above.

• Important thing: difference between true and empirical risks is at most of the
order of √

h log n

n
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