ORF 522

Linear Programming and Convex Analysis

Farkas lemma, dual simplex and sensitivity analysis

Marco Cuturi
Reminder

Covered duality theory in the general case.

- Lagrangian $L(x, \lambda, \mu) = f_0(x) + \sum_{i=1}^{m} \lambda_i f_i(x) + \sum_{i=1}^{p} \mu_i h_i(x)$
- Lagrange dual function $g(\lambda, \mu) = \inf_{x \in D} (f_0(x) + \sum_{i=1}^{m} \lambda_i f_i(x) + \sum_{i=1}^{p} \mu_i h_i(x))$
- Lagrange dual function at any $\mu, \lambda \geq 0$ gives lower bounds for a min. problem.
- However, for most λ, μ, the bound is $-\infty$.
- If we look for the optimum, we have a concave maximization problem.
- Always weak $(d^* < p^*)$ duality. Strong $(d^* < p^*)$ for some problems.

Looked more particularly at duality for LP’s.

- duals of LP’s are LP’s. LP’s are self-dual.
- Always strong duality.
- Complementary Slackness $u_i = v_j = 0$.
Today

- Network flow example: Max-flow / Min-Cut.
- Strong Duality in LP’s through Farkas Lemma
- Strong duality illustration: gravity
- Dual Simplex
- Sensitivity Analysis... many case-scenarios for perturbation.
Network flow: Max-flow / Min-cut
Network flow: Max-flow / Min-cut

- m nodes, N_1, \cdots, N_m.
- d directed edges (arrows) to connect pairs of nodes (N_i, N_i') in a set \mathcal{V}
 - Each edge carries a flow $f_k \geq 0$.
 - Each edge has a bounded capacity (pipe width) $f_k \leq u_k$.
- Relating edges and nodes: the network's incidence matrix $A \in \{−1, 0, 1\}^{m \times d}$:

 \[A_{ik} = \begin{cases}
 1 & \text{if edge } k \text{ starts at node } i \\
 -1 & \text{if edge } k \text{ ends at node } i \\
 0 & \text{otherwise}
 \end{cases} \]

- For a node i,

 \[\sum_{k \text{ s.t. edge ends at } i} f_k = \sum_{k \text{ s.t. edge starts at } i} f_k \]

- In matrix form: $Af = 0$
First problem: Maximal Flow

- We consider a **constant flow** from node 1 to node \(m \).
- What is the **maximal flow** that can go through the system?
- We **close the loop** with an **artificial edge** \((N_1, N_m)\), the \(d + 1 \)th edge.
- if \(u_{d+1} = \infty \), what would be the maximal flow \(f_{d+1} \) of that edge?
- Namely solve

 \[
 \begin{align*}
 \text{minimize} & \quad c^T f = -f_{d+1}, \\
 \text{subject to} & \quad [A , e] f = 0, \\
 & \quad 0 \leq f_1 \leq u_1, \\
 & \quad \vdots \\
 & \quad 0 \leq f_d \leq u_d, \\
 & \quad 0 \leq f_{d+1} \leq u_{d+1},
 \end{align*}
 \]

 with \(e = (-1, 0, \ldots, 0, 1) \) and \(c = (0, \ldots, 0, -1) \) and \(u_{d+1} \) a very large capacity for \(f_{d+1} \).
Second problem: Minimal Cut

- Suppose you are a **plumber** and you want to completely **stop the flow** from node N_1 to N_m.

- You have to remove **edges** (pipes). What is the minimal capacity you need to remove to **completely** stop the flow between N_1 to N_m?

- Goal: cut the set of nodes into two disjoint sets S and T.

- Remove a set $C \subset V$ of edges and minimize the total capacity of C.

- $y_{i,j} \in \{0, 1\}$ will keep track of cuts. 1 for a cut, 0 otherwise.

- For each node N_i there is a variable z_i which is 0 if N_i is in the set S or 1 in the set T. We arbitrarily set $z_1 = 0$ and $z_N = 1$.

\[
\begin{align*}
\text{minimize} & \quad \sum_{(i,j)\in V} y_{i,j} w_{i,j} \\
\text{subject to} & \quad y_{i,j} + z_i - z_j \geq 0 \\
& \quad z_1 = 1, z_t = 0, z_i \geq 0, \\
& \quad y_{i,j} \geq 0, (i, j) \in V
\end{align*}
\]
Duality: example

- Let us form the **Lagrangian** of the Max-Flow problem:

\[
L(f, y, z) = c^T f + z^T [Ae] f + y^T (f - u)
\]

for \(f \geq 0 \) here.

- The **Lagrange dual function** is defined as

\[
g(y, z) = \inf_{f \geq 0} L(f, y, z)
= \inf_{f \geq 0} f^T \left(c + y + \begin{bmatrix} A^T \\ e^T \end{bmatrix} z \right) - u^T y
\]

- As usual, this infimum yields either \(-\infty\) or \(-u^T y\):

\[
g(y, z) = \begin{cases}
-u^T y & \text{if } \left(c + y + \begin{bmatrix} A^T \\ e^T \end{bmatrix} z \right) \geq 0 \\
-\infty & \text{otherwise}
\end{cases}
\]
Duality: example

This means that the dual of the maximum flow problem is written:

\[
\begin{align*}
\text{minimize} & \quad u^T y \\
\text{subject to} & \quad c + y + \begin{bmatrix} A^T \\ e \end{bmatrix} z \geq 0
\end{align*}
\]

Compare the following dual with changed notations, from \(d + 1\) edges to \((d + 1)\) couple of points \((i, j) \in \mathcal{V}\)

\[
\begin{align*}
\text{minimize} & \quad \sum_{(i,j) \in \mathcal{V}} y_{ij} u_{ij} \\
\text{subject to} & \quad y_{N,1} + z_N - z_1 \geq 1 \\
& \quad y_{ij} + z_i - z_j \geq 0, \quad (i,j) \in \mathcal{V}, \\
& \quad y_{ij} \geq 0
\end{align*}
\]

to the minimum cut problem. The two problems are identical.
Duality: example

- The objective is to minimize:

\[\sum_{(i,j) \in \mathcal{V}} u_{ij} y_{ij}, \quad (y_{i,j} \geq 0), \]

where \(u_{d+1} = u_{N,1} = M \) (very large), which means \(y_{N,1} = 0 \).

- The first equation then becomes:

\[z_N - z_1 \geq 1 \]

so we can fix \(z_N = 1 \) and \(z_1 = 0 \).
Duality: example

- The equations for all the edges starting from $z_1 = 0$:

$$y_{1j} - z_j \geq 0$$

- Then, two scenarios are possible (no proof here):
 - $y_{1j} = 1$ with $z_j = 1$ and all the following z_k will be ones in the next equations (at the minimum cost):

$$y_{jk} + z_j - z_k \geq 0, \quad (j, k) \in V$$

 - $y_{1j} = 0$ with $z_j = 0$ and we get the same equation for the next node:

$$y_{jk} - z_k \geq 0, \quad (j, k) \in V$$
Interpretation?

- If a node has $z_i = 0$, all the nodes preceding it in the network must have $z_j = 0$.
- If a node has $z_i = 1$, all the following nodes in the network must have $z_j = 1$.
- This means that z_j effectively splits the network in two partitions.
- The equations:
 \[
 y_{ij} - z_i + z_j \geq 0
 \]
 mean for any two nodes with $z_i = 0$ and $z_j = 1$, we must have $y_{ij} = 1$.
- The objective minimizes the total capacity of these edges, which is also the capacity of the cut.
Strong duality and geometric interpretations
Proof for strong duality

- Remember the proof strategy:
 - We considered a **standard form** minimization first.
 - We used the **simplex** algorithm to reach a solution \(\mathbf{I} \).
 - The **reduced cost coefficient** at the optimum satisfies \(c^T - c^T_B I \mathbf{A} \geq 0 \).
 - We saw that writing \(\mu^T = c^T_B I \mathbf{A}^{-1} \) yielded a **feasible dual solution**.
 - That dual solution was furthermore **optimal** and shared the same objective with \(\mathbf{x}_I \).

- In the next slides,
 - We prove strong duality for LP’s through **Farkas’ Lemma**. No simplex argument.
 - We introduce a **physical analogy** often used to illustrated (strong) duality.
Farkas Lemma

- Basically states the feasibility of two **different** problems, two related problems.

Theorem 1. Let $A \in \mathbb{R}^{m \times n}$ and let $b \in \mathbb{R}^m$. Then exactly one of the two alternatives holds

1. there exists $x \geq 0$ such that $Ax = b$.
2. there exists μ such that $\mu^T A \geq 0$ and $\mu^T b < 0$.

![Diagram of Farkas Lemma](image)
Farkas Lemma: Proof

• if (1), then suppose $\mu^T A \geq 0$. Through the solution x of (1) we obtain

$$\mu^T A x = \mu^T b \geq 0,$$

which shows that (2) cannot be true.

• Let S be the image of A on \mathbb{R}^n_+, that is $S = \{Ax, x \geq 0\}$.

 o S is convex, closed and contains 0.
 o If $b \notin S$, that is if (1) is not true, necessarily $\exists \mu$ such that $H_{\mu, \mu^T b}$ strictly isolates S and $S \subset H^+_{\mu, \mu^T b}$
 o Since $0 \in S$, $\mu^T b < 0$.
 o On the other hand, every $\mu^T a_i \geq 0$. If not,
 ▷ for a sufficiently big positive M, $\mu^T (Ma_i) < \mu^T b$
 ▷ Contradiction since $Ma_i \in S$
 o Hence $\mu^T A \geq 0$ and since $\mu^T b < 0$, (2) is ensured.
Corollary 1. Let a_1, a_2, \cdots, a_n and b be given vectors and suppose that any vector μ that satisfies $\mu^T a_i \geq 0$, $i = 1, \ldots, n$, must also satisfy $\mu^T b \geq 0$. Then b can be expressed as a nonnegative linear combination of the vectors a_1, \cdots, a_n.

- the first part of the sentence is the negation of (2) in the original Farkas lemma. Then necessarily (1) is true.
Proving Strong Duality with Farkas Lemma

- We have proved the following theorem:

Theorem 2. if an LP has an optima, so does its dual, and their respective optimal objectives are equal.

- Alternative proof: consider the primal-dual problems:

 \[
 \begin{align*}
 \text{minimize} & \quad c^T x \\
 \text{subject to} & \quad Ax \geq b \\
 \Rightarrow \quad & \\
 \text{maximize} & \quad b^T \mu \\
 \text{subject to} & \quad A^T \mu = c \\
 & \quad \mu \geq 0
 \end{align*}
 \]

- Let \(x^* \) be the primal optimal solution. Let us show \(\exists \mu^* \) dual solution with same cost.

 - \(J = \{ i | A^T_i x^* = b_i \} \) and let \(d \) be such that \(A^T_i d \geq 0 \) for \(i \in J \).

 - Consider \(\hat{x} = x^* + \varepsilon d \). We have \(A^T_i \hat{x} \geq A^T_i x^* = b_i \). feasible for \(J \)

 - For \(i \notin J \), \(A^T_i x^* > b_i \) and hence \(\hat{x} \) is feasible for \(\varepsilon \) sufficiently small. feasible

 - By optimality of \(x^* \) as a minimum, \(c^T x^* \leq c^T \hat{x} \) and \(c^T d \) must be nonnegative.
Proving Strong Duality with Farkas Lemma

- Through \(x^* \)'s optimality we have proved \(A_i^T d \geq 0 \) for \(i \in J \Rightarrow c^T d \geq 0 \).
- Using Farkas’ Lemma’s corollary, there must be \(\mu_i \geq 0, i \in J \) such that

\[
c = \sum_{i \in J} \mu_i A_i.
\]

- For \(i \notin J \) set \(\mu_i = 0 \).
- Thus \(\mu \geq 0 \) and \(\mu \) is dual feasible. Finally

\[
\mu^T b = \sum_{i \in J} \mu_i b_i = \sum_{i \in J} \mu_i A_i^T x^* = c^T x^*.
\]

- Through weak duality’s second corollary (primal and dual pair have same objective then both are optimal) we obtain strong duality.
• We have proved that Farkas’ lemma, a consequence of the isolation theorem, can prove strong duality.

• We follow with a widely used geometric and physical illustration of strong duality.

• Suppose we are in \mathbb{R}^2. We define a set of m inequalities $A_i^T x \geq b_i$.

• A ball is thrown in the feasible set. Gravity makes it roll down to the lowest corner of the polyhedron.

• When in contact with the ball, each wall i exerts a force $\mu_i A_i$ on the ball that is parallel to A_i.
Gravity Example

- the position x of the ball is the solution of

$$\begin{align*}
&\text{minimize} \quad c^T x \\
&\text{subject to} \quad A_i^T x \geq b_i, \quad i = 1..m,
\end{align*}$$

where c points upwards, that is the opposite of the gravity vector.
Gravity Example

- The different walls exert forces $\mu_1 A_1, \mu_2 A_2, \cdots, \mu_m A_m$ on the ball. $\mu_i \geq 0$
- When \mathbf{x} does not rest on wall i, $\mu_i = 0$ necessarily. Hence $\mu_i (b_i - A_i^T \mathbf{x}) = 0$.
- At the optimum, the forces cancel gravity: $\sum_{i=1}^m \mu_i A_i = \mathbf{c}$.
- At the optimum, $\mu^T \mathbf{b} = \sum_{i=1}^m \mu_i b_i = \sum_{i=1}^m \mu_i A_i^T \mathbf{x}^* = \mathbf{c}^T \mathbf{x} \Rightarrow \text{Strong duality}$
Dual Simplex Method
Intuition

- Strong duality proof using the simplex:
 - We start with a **standard form minimization**.
 - The **reduced cost coefficient** at the optimum satisfies \(c^T - c^T B^{-1}_I A \geq 0 \).
 - We saw that writing \(\mu^T = c^T B^{-1}_I \) yielded a **feasible dual solution**.
 - That dual solution was **optimal** and shared the same objective with \(x_I \).

- There is some **obvious symmetry** between the **reduced cost coefficient** and the **solution** for a given base.
Primal and dual simplex in a few words:

- Given a BFS for the primal, the **primal** simplex looks for a **dual feasible solution** $\mu^T = c_I^T B_I^{-1}$ while maintaining **primal feasibility** for x.

- Given a dual BFS, the **dual** simplex looks for a **primal feasible solution** x while maintaining **dual feasibility** for μ.

Why consider it? great for understanding. useful for sensitivity analysis.
A not so distant reminder on tableaux

\[
\begin{array}{ccc}
\vdots & \cdots & \vdots \\
\vdots & B_I^{-1}A & \vdots \\
\vdots & \vdots & \vdots \\
\cdots & (c - c_I^T B_I^{-1} A)^T & \cdots \\
\end{array}
\quad
\begin{array}{c}
\vdots \\
B_I^{-1}b \\
\vdots \\
-c_I^T B_I^{-1} b \\
\end{array}
\]

In the dual simplex iterations,

- we do not assume that $B_I^{-1}b$ is nonnegative at each iteration.
- we assume that $(c - c_I^T B_I^{-1} A)^T \geq 0$, or equivalently that $\mu^T A \leq c^T$.

This means $\mu = B_I^{-1}c_I$ is dual-feasible...

Note the analogy between $c_I^T B_I^{-1}$ or $B_I^{-1}c_I$ and $B_I^{-1}b$.

If by any chance both $(c - c_I^T B_I^{-1} A)^T \geq 0$ and $B_I^{-1} b \geq 0$ then we have found the solution.

If not... basis change!
Pivot

• Let’s write $r = c - c^T B^{-1}_I A$.

• Select a **primal** variable i_l s.t. $(B^{-1}_I b)_l < 0$ and consider the tableau lth row.

• That row is made of $(y_{l,i})_{1 \leq i \leq n}$ coordinates.

 ○ for each i such that $y_{l,i} < 0$, consider the ratio $\frac{r_i}{|y_{l,i}|}$,

 ○ let j be the column number for which this ratio is smallest.

 ○ j must correspond to a nonbasic variable (otherwise $y_{l,j}$ is zero or 1 for $y_{l,i}$).

 ○ Then completely standard pivot on $y_{l,j}$: $I \leftarrow I \setminus \{i_l\} \cup \{j\}$.

 ○ Can prove that the new reduced cost coefficients stay positive, and we keep dual-feasibility.
Dual Simplex Pivot Example

- The following tableau is dual feasible

\[
\begin{array}{cccccc}
-2 & 4 & 1 & 1 & 0 & 2 \\
4 & -2 & -3 & 0 & 1 & -1 \\
2 & 6 & 10 & 0 & 0 & 0 \\
\end{array}
\]

- The basis \(I = \{4, 5\} \). The current solutions’ second variable \((B^{-1}_I b)_2\) is negative.

- Negative entries for the second row can be found in 2nd and 3rd variables

- Corresponding ratios \(6/|−2|\) and \(10/|−3|\). Therefore \(I’ = \{4, 5\} \setminus \{5\} \cup \{2\}\) and we pivot accordingly

\[
\begin{array}{ccccc}
6 & 0 & -5 & 1 & 2 & 0 \\
-2 & 1 & 3/2 & 0 & -1/2 & 1/2 \\
14 & 0 & 1 & 0 & 3 & -3 \\
\end{array}
\]

- primal and dual feasible... optimal and optimum is 3
The dual simplex proceeds in the same way that the (primal simplex)
Any base I, defines a primal $B_I^{-1}b$ and dual solution $(c_I^T B_I^{-1})A \leq c^T$.
Assume I provides a dual feasible solution.
Update the base through two criterions:
 - The column $B_I^{-1}b$ has negative elements? that gives exiting index i_l.
 - Is there a pivot feasible for the reduced costs? entering column j.
Pivot and update the whole tableau.
Dual Simplex Summary

● When can/should we use the dual simplex?
 ○ We have a base I that is dual-feasible to start our problem.
 ○ We have a solution x^* with base I for a problem and we only change the constraints b.
Sensitivity Analysis
Sensitivity analysis

Let’s study sensitivity with a generic problem and its dual:

\[
\begin{align*}
\text{minimize} & \quad f_0(x) & & \text{maximize} & \quad g(\lambda, \mu) \\
\text{subject to} & \quad f_i(x) \leq 0, & & \text{subject to} & \quad \lambda \geq 0, \\
& \quad h_i(x) = 0, & & & \lambda = 1, \ldots, m \\
& & & & i = 1, \ldots, p \\
\end{align*}
\]

Consider a small perturbation \((u, v)\) to the constraints:

\[
\begin{align*}
\text{minimize} & \quad f_0(x) & & \text{maximize} & \quad g(\lambda, \mu) - \lambda^T u - \mu^T v \\
\text{subject to} & \quad f_i(x) \leq u_i, & & \text{subject to} & \quad \lambda \geq 0, \\
& \quad h_i(x) = v_i, & & & i = 1, \ldots, m \\
& & & & i = 1, \ldots, p \\
\end{align*}
\]

Here \(x, \lambda, \mu\) are variables and \((u, v)\) parameters.

We write \(p^*(u, v)\) for the optimum of the problem given perturbations \(u, v\).

This value may not be defined if the problem is unfeasible...
Global sensitivity analysis

- Suppose we have **strong duality** in the original problem, i.e. \(\exists \lambda^* \geq 0, \mu^* \) s.t. \(P^*(0, 0) = g(\lambda^*, \mu^*) \).

- For \((u, v)\) such that \(p^*(u, v) \) is defined, by weak duality,

\[
p^*(u, v) \geq g(\lambda^*, \nu^*) - u^T \lambda^* - v^T \mu^* \\
\geq p^*(0, 0) - u^T \lambda^* - v^T \mu^*
\]

- This gives a global lower bound, and indications on \(p^* \) for some changes:
 - If \(\lambda_i^* \gg 0, u_i < 0 \) (tighten constraint), then **big increase** for \(p^* \).
 - If \(\lambda_i^* \) is small, \(u_i > 0 \) (loosen constraint), then **little impact** on \(p^* \).
 - If \(\mu_i^* \gg 0 \) and \(v_i < 0 \) or \(\mu_i^* \ll 0 \) and \(v_i > 0 \) then **big increase** for \(p^* \).
 - If \(\mu_i^* \approx 0^+ \) and \(v_i > 0 \) or \(\mu_i^* \approx 0^- \) and \(v_i < 0 \) then **little impact** on \(p^* \).
Local sensitivity analysis

• Suppose p^* is differentiable around $u = 0, v = 0$.

• Hence, for small values (u, v) we have:

$$
\lambda_i^* = -\frac{\partial p^*(0, 0)}{\partial u_i}, \quad \mu_i^* = -\frac{\partial p^*(0, 0)}{\partial v_i}
$$

• The dual solution gives the local **sensitivities** of the optimal objective with respect to constraint perturbations.

• This time the interpretation is **symmetric**.

• The objective moves by $-\lambda_i^* u_i$ whatever the signs of λ_i^* and u_i.
Sensitivity Analysis, The LP case
Sensitivity analysis, the LP case

- Suppose we have a standard form LP

\[
\begin{align*}
\text{minimize} & \quad c^T x \\
\text{subject to} & \quad Ax = b \\
& \quad x \geq 0
\end{align*}
\]

- As usual, assume \(I \) is the optimal base and \(x^* \) the optimum.

- Suppose \(b \) is replaced by \(b + d \) where \(d \approx 0 \).
 - As long as \(x^* \) is non-degenerate and \(d \) small, \(B_I^{-1}(b + d) \geq 0 \). feasible
 - Since \(I \) is optimal, \(c - c_I^T B_I^{-1} A \geq 0 \). still optimal

- Hence the same basis is still optimal for an infinitesimally perturbed problem.
Sensitivity analysis, the LP case

• The new optimum is

$$c^T_i B_i^{-1} (b + d) = \mu^T (b + d)$$

• perturbation d: z^* becomes $z^* + \mu^T d$.

• each component μ_i can be interpreted as the marginal cost of each unit increase of b_i.

• Such marginal costs are also called shadow prices.
Sensitivity: examples

- The **simplex** can handle more *advanced perturbation scenarios*.
- Suppose we have converged to an optimum \mathbf{I} and have access to \mathbf{x}^* and $\mathbf{\mu}^*$.
- We review the following scenarios:
 1. A new variable is added
 2. A new inequality constraint is added
 3. A new equality constraint is added
 4. The constraint vector \mathbf{b} is changed
 5. The cost vector \mathbf{c} is changed
 6. A nonbasic column of \mathbf{A} changes
 7. A basic columns of \mathbf{A} changes

 and discuss how we can still use \mathbf{I} to get the new optimum quickly.
1. New variable

- Suppose the program becomes

\[
\begin{align*}
\text{minimize} & \quad c^T x + c_{n+1} x_{n+1} \\
\text{subject to} & \quad A x + a_{n+1} x_{n+1} = b \\
& \quad x \geq 0, x_{n+1} \geq 0
\end{align*}
\]

- Note that \((x^*, 0)\) is already a BFS of the new problem.

- For the basis \(I\) to remain optimal, we need that

\[
\begin{align*}
c_{n+1} - c_I^T B_I^{-1} a_{n+1} \geq 0.
\end{align*}
\]

- If this is the case, \(I\) is still optimal.

- If not, we start from \((x^*, 0)\) and use the simplex algorithm.

- Running time typically much lower than rerunning everything from scratch.
2. New inequality

- Suppose the program has a new constraint $A_{m+1}^T x \geq b_{m+1}$.
- If x^* already satisfies this inequality, then x^* is still optimal.
- If not, introduce a surplus variable x_{n+1} and $A_{m+1}^T x - x_{n+1} = b_{m+1}$.
- We obtain the following standard form, writing $\beta = \begin{bmatrix} b \\ b_{m+1} \end{bmatrix}$ and $x \in \mathbb{R}^{n+1}$,

\[
\begin{array}{l}
\text{minimize} & c^T x \\
\text{subject to} & \begin{bmatrix} A_{m+1}^T & 0 \\ A_{m+1}^T & -1 \end{bmatrix} x = \beta \\
& x \geq 0
\end{array}
\]
2. New inequality

- We use a basis $\mathbf{I}' = \mathbf{I} \cup \{n + 1\}$. Write $\mathbf{a} = A_{m+1, \mathbf{I}}$ Note that

$$B_{\mathbf{I}'} = \begin{bmatrix} B_{\mathbf{I}} & 0 \\ \mathbf{a}^T & -1 \end{bmatrix}, \quad \det B_{\mathbf{I}'} = -\det B_{\mathbf{I}} \neq 0, \quad B_{\mathbf{I}'}^{-1} = \begin{bmatrix} B_{\mathbf{I}}^{-1} & 0 \\ \mathbf{a}^T B_{\mathbf{I}}^{-1} & -1 \end{bmatrix}.$$

- The corresponding primal point is $[x^* \quad \mathbf{a}^T x^* - b_{m+1}]$. It is infeasible by assumption.

- On the other hand the new reduced cost is given by

$$[\mathbf{c}^T 0] - [\mathbf{c}_{\mathbf{I}}^T 0] \begin{bmatrix} B_{\mathbf{I}}^{-1} & 0 \\ \mathbf{a}^T B_{\mathbf{I}}^{-1} & -1 \end{bmatrix} \begin{bmatrix} A_{m+1} & 0 \\ -1 \end{bmatrix} = [\mathbf{c}^T - \mathbf{c}_{\mathbf{I}}^T B_{\mathbf{I}}^{-1} A \quad 0] \quad \text{which is thus nonnegative by optimality of } \mathbf{I}.$$

- Hence \mathbf{I}' is dual feasible... dual simplex with the tableau given by $B_{\mathbf{I}'}^{-1}$.
3. New equality

- New constraint $A_{m+1}^T x = b_{m+1}$ and suppose $A_{m+1}^T x^* > b_{m+1}$
- The dual of the new problem becomes

 maximize $\mu^T b$

 subject to $\begin{bmatrix} \mu^T & \mu_{m+1} \end{bmatrix} \begin{bmatrix} A_{m+1}^T \\ A_{m+1} \end{bmatrix} \leq c^T$.

 where μ_{m+1} is a new dual variable associated with the latest constraint.
- If μ^* is the optimal dual solution for I^*, $(\mu^*, 0)$ is feasible, but we have no base I that corresponds to $(\mu^*, 0)$...
- Back to the primal. We modify it by an auxiliary problem with $M \gg 0$

 minimize $c^T x + M x_{n+1}$

 subject to $Ax = b$

 $A_{m+1}^T x - x_{n+1} = b_{m+1}$

 $x, x_{m+1} \geq 0$

- We can then use the approach in (2) by considering $B_{I'} = \begin{bmatrix} B_I & 0 \\ a^T & -1 \end{bmatrix}$.
4. Change in constraint vector b

- Suppose b_j of b is changed to $b_j + \delta$, that is b is changed to $b + \delta e_j$.
- For what range of δ will I remain feasible? remember that optimality is not affected.
- Let $B_I^{-1} = [\beta_{i,j}]$. The condition $B_I^{-1}(b + \delta e_j) \geq 0$ is equivalent to

$$\max_{\{i | \beta_{ij} > 0\}} -\frac{(B_I^{-1}b)_i}{\beta_{ij}} \leq \delta \leq \min_{\{i | \beta_{ij} < 0\}} -\frac{(B_I^{-1}b)_i}{\beta_{ij}}$$

- For this range, the optimal cost is given by $c_I^T B_I^{-1}(b + \delta e_j) = \mu_*^T b + \delta \mu_*^j$.
- Outside the range, run the dual simplex starting with μ^*.
5. Change in cost vector \mathbf{c}

- Suppose c_j of \mathbf{c} is changed to $c_j + \delta$, that is \mathbf{c} is changed to $\mathbf{c} + \delta \mathbf{e}_j$.
- Primal feasibility of \mathbf{I} is not affected. However, we need to check $\mathbf{c}_I^T \mathbf{B}_I^{-1} \mathbf{A} \leq \mathbf{c}^T$.
- If j corresponds to a **nonbasic** variable, \mathbf{c}_I does not change, but we need that
 \[-(c_j - \mathbf{c}_I^T \mathbf{B}_I^{-1} \mathbf{a}_j) \leq \delta.
\]
 If this is not ensured, we have to apply a few primal simplex iterations.
- If j corresponds to a **basic** variable, i.e. $i_l = j$, then the condition becomes
 \[(\mathbf{c}_I + \delta \mathbf{e}_l)^T \mathbf{B}_I^{-1} \mathbf{a}_i \leq c_i.
\]
- Equivalently, $\delta y_{l,i} \leq c_i - \mathbf{c}_I^T \mathbf{B}_I^{-1} \mathbf{a}_i$ ensures the solution remains optimal.
6. Change in nonbasic column of \(A \)

- The \(i \)th coordinate of a **nonbasic** column vector \(\mathbf{a}_j \) is changed to \(a_{ij} + \delta \).
- If the variable is nonbasic, primal feasibility is not affected.
- Dual feasibility: \(c_j - \mu^T(\mathbf{a}_j + \delta \mathbf{e}_i) \geq 0 \).
- If this inequality is violated, \(j \) can be inserted in the basis, requiring a primal simplex step.
7. Change in nonbasic column of A

- The ith coordinate of a **basic** column vector a_j is changed to $a_{ij} + \delta$, both feasibility and optimality conditions are affected.

- exercise...
Next time

- Ellipsoid Method and Polynomial Complexity of the Simplex.