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Reminder: Basic Feasible Solutions, Extreme points, Optima

Three fundamental theorems:

• Let x be a basic feasible solution (BFS) to a LP with index set I and
objective value z. If ∃e, 1 ≤ e ≤ n, e /∈ I such that ce − ze > 0 and at least
one yi,e > 0, then we can have a better basic feasible solution by replacing
an index in I by e with a new objective ẑ ≥ z, strictly if xI is non-degenerate.

• Let x⋆ be a basic feasible solution (BFS) to a LP with index set I and
objective value z⋆. If ci − z⋆

i ≤ 0 for all 1 ≤ i ≤ n then x⋆ is optimal.

• Let x be a basic feasible solution (BFS) to a LP with index set I. If ∃ an
index e /∈ I such that ye ≤ 0 then the feasible region is unbounded. If
moreover for e the reduced cost ce− ze > 0 then there exists a feasible solution
with at most m + 1 nonzero variables and an arbitrary large objective
function.
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Today

• Visualizing the simplex.

• Example of tableaux in canonical feasible form.
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Reflecting on the Algorithm
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So far, what is the simplex?

• The simplex is a family of algorithms which do the following:

1. Obtains an initial Basic feasible solution. more on that later.
2. iterates: move from one BFS I to a better BFS I′:
◦ check reduced cost coefficients cj − cT

I B−1
I aj, j ∈ O. if all negative I is

optimal, OVER.
◦ otherwise, pick one index e for which it is positive. this will enter I.
◦ Check coordinates of ye = B−1

I ae. if all ≤ 0 then optimum is
unbounded, OVER.
◦ otherwise, take the index r such that it achieves the minimum in
{

xij

yj,e
|yj,e > 0, 1 ≤ j ≤ m}, this will ensure feasibility. The rth index of

the base I is ir ≤ n.
◦ I′ = {I \ ir} ∪ e.
◦ We have improved on the objective. If xI was not degenerate, we have

strictly improved.
◦ I← I′

• The loop is on a finite set of extreme points. it either exits early (unbounded),
exits giving an answer (optimum I⋆ and corresponding solution x⋆) or loops
indefinitely (degeneracy).
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A Matlab Demo With Polyhedrons Containing the Origin
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A Matlab Demo With Polyhedrons Containing the Origin

now with the real matlab demo...
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Tableaux with Canonical Feasible Form
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WHY tableaux ?

• Last time: an example where we move from a base I to a new base I′, compute
B−1

I′
, do the multiplications etc.. and reach the optimum. This is the simplex.

• Double issue:

◦ Computational 1: inverting matrices costs time & money. One column is
different between BI and BI′, can we do better than inverting everything
again?
◦ Computational 2: multiplying matrices costs time & money. B−1

I A and
B−1

I′
A are related.
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WHY tableaux ?

• Down to what we really need at each iteration:

◦ reduced cost coefficients vector (ci − zi) of Rn to pick an index e and check
optimality,
◦ All column vectors of A in the base I, that is Y , to check boundedness and

choose r, namely all coordinates of ye = B−1
I ae in particular.

◦ The current basic solution vector, B−1
I b both to choose r and on exit.

◦ Having also the objective cT
I B−1

I b would help.

• Summing up, we need something that keeps track of

. . . . . . . . . ...
... B−1

I A ... B−1
I b

. . . . . . . . . ...

· · · (c− z)′ · · · cT
I B−1

I b
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Canonical Feasible Form: We know an initial BFS to

corresponding Standard Form

• let’s standardize a feasible (i.e.b ≥ 0) canonical form:

maximize αTu

subject to

{
Mu ≤ b

u ≥ 0

• We assume that u, α ∈ Rd for a d dimensional objective and M ∈ Rm×d and
b ∈ Rm for m constraints.
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Canonical Feasible Form: We know an initial BFS to

corresponding Standard Form

• Slack variables xd+1, · · · , xd+m can be added so that [A, Im]

[ u
xd+1

...
xd+m

]
= b and

the problem is now with c = [α, 0, · · · , 0︸ ︷︷ ︸
m

] ∈ Rd+m

maximize x0 = cTx

subject to

{
[M, Im]x = b

x ≥ 0

• x, c ∈ Rm+d, c = [ α
0 ], A = [M, Im] ∈ Rm×(m+d) and same b ∈ Rm.

• The dimensionality of the problem is now n = d + m.
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Simplex Method: Tableau

Let us represent this by an (annotated) tableau:

O I

x1 x2 · · · xe · · · xd xd+1 xd+2 · · · xd+r · · · xd+m b

xd+1 m11 m12 · · · m1e · · · m1d 1 0 · · · 0 · · · 0 b1

xd+2 m21 m22 · · · m2e · · · m2d 0 1 · · · 0 · · · 0 b2
... ... ... . . . ... . . . ... ... ... . . . ... . . . ... ...

xd+r mr1 mr2 · · · mre · · · mrd 0 0 · · · 1 · · · 0 br
... ... ... . . . ... . . . ... ... ... . . . ... . . . ... ...

xd+m mm1 mm2 · · · mme · · · mmd 0 0 · · · 0 · · · 1 bm

x0 c1 c2 · · · ce · · · cd 0 0 · · · 0 · · · 0 0

• Since b ≥ 0, take an original BFS as

[
0, · · · , 0︸ ︷︷ ︸

d

, b1, b2, · · · , bm

]T

• Why:

◦ basic: I = {d + 1, . . . , d + m}

◦ feasible: [0, · · · , 0, b1, b2, · · · , bm]
T
≥ 0.
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Simplex Method: Tableau

• the structure of the tableau so far,

A b

cT 0

• The index set I so far {d + 1, d + 2, · · · , d + m}.

• BI = Im, B−1
I b = b, B−1

I A = A etc..

• The lower-right coincides with the objective so far... 0

• c is actually equal to (c− zI) when I only describes slack variables.
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Simplex Method without non-negativity and objectives...

• Remember: a basis I gives a sparse solution xI.

• there’s one basis I⋆ which is the good one.

• The solution is x such that x⋆
I = B−1

I⋆ b and the rest is zero.

• We can start with the slack variables as a basis in canonical feasible form.

• Under this form, the first matrix basis is BI = Im the identity matrix.

• We will move from one basis to the other. We’ve proved this is possible.

• In doing so, we also have to recast the cost.

• Let’s check how it looks in practice, without looking at feasibility and objective
related concepts.
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...the Gauss pivot...

• Consider now taking a variable out of I to replace it by a variable in O.

• The rth index of I, ir leaves the basis, e initially in O is removed.
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...the Gauss pivot...

• Two ways of looking at the same operation:

◦ Through elementary row/column operations transfer a vector




0...
0
1
0...
0


 where the 1

is in position r to get a similar basis vector in the eth column of A.




· · · ir · · · e · · ·
... . . . 0 . . . ... . . .
r · · · 1 · · · are · · ·
... . . . 0 . . . ... . . .
i · · · 0 · · · aie · · ·
... . . . 0 . . . ... . . .



⇒




· · · ir · · · e · · ·
... . . . ... . . . 0 . . .
r · · · ar,ir · · · 1 · · ·
... . . . ... . . . 0 . . .
i · · · ai,ir · · · 0 · · ·
... . . . ... . . . 0 . . .



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...the Gauss pivot...

◦ Consider the equalities Ax = b written in row form,

uT
i x = bi

where the u’s are the rows of A.
◦ Putting variable xe in the basis is equivalent to isolating xe so that is present in

all but one of the m equations, with coefficient 1. On the other hand we let
xir enter all equations again, that is

xe = b̃i −

n∑

i=1,i 6=e

ρixi

and xe does not appear elsewhere.
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...the Gauss pivot

• This is achieved through a pivot in the tableau.

• Once the rth element of basis I, namely column ir ≤ n, and e ≤ n are agreed
upon, the rules to update the tableau are:

(a) in pivot row arj ← arj/are.
(b) in pivot column are← 1, aie = 0 for i = 1, · · · , m, i 6= r: the eth column

becomes a matrix of zeros and a one.
(c) for all other elements aij ← aij −

arjaie

are
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The Gauss pivot

• Graphically,




· · · j · · · e · · ·
... . . . ... . . . ... . . .
i · · · aij · · · aie · · ·
... . . . ... . . . ... . . .
r · · · arj · · · are · · ·
... . . . ... . . . ... . . .



⇒




· · · j · · · e · · ·
... . . . ... . . . ... . . .
i · · · aij −

arjaie

are
· · · 0 · · ·

... . . . ... . . . ... . . .
r · · · arj/are · · · 1 · · ·
... . . . ... . . . ... . . .




• Look at how the column e is now a column of 0 and 1’s. This makes sense

since B−1
I ae =




0...
0
1
0...
0


 with 1 in eth position means ae is in the basis.
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Linear system and pivoting

• Consider the linear system





x1 + x2 − x3 + x4 = 5
2x1 − 3x2 + x3 + x5 = 3
−x1 + 2x2 − x3 + x6 = 1

• The corresponding tableau




a1 a2 a3 a4 a5 a6 b

1 1 −1 1 0 0 5
2 −3 1 0 1 0 3
−1 2 −1 0 0 1 1



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Simplex Method: Swapping Indexes

• in the corresponding tableau,




a1 a2 a3 a4 a5 a6 b

a4 1 1 −1 1 0 0 5
a5 2 −3 1 0 1 0 3
a6 −1 2 −1 0 0 1 1




notice the structure:

. . . . . . . . . . . . . . . . . . ...
... M ... ... I3

... b

. . . . . . . . . . . . . . . . . . ...

• And the fact that by taking the obvious basis I = {4, 5, 6} we have BI = I3

and B−1
I = I3
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Simplex Method: Let’s pivot

• Let’s pivot arbitrarily. We put 1 in the base and remove 4.




x1 a2 a3 a4 a5 a6 b

a4 1 1 −1 1 0 0 5
a5 2 −3 1 0 1 0 3
a6 −1 2 −1 0 0 1 1




which yields




a1 a2 a3 a4 a5 a6 b

a1 1 1 −1 1 0 0 5
a5 0 −5 3 −2 1 0 −7
a6 0 3 −2 1 0 1 6




• I = {1, 5, 6}, that is BI =
[

1 0 0
2 1 0
−1 0 1

]
. The basic solution is such that

xI = B−1
I b

• Note that all coordinates of a1, · · · ,a6,b in the table are given with respect to
a1, a5,a6. In particular the last column corresponds to B−1

I b...not feasible
here BTW.

Princeton ORF-522 23



Simplex Method: again...

• Let’s pivot arbitrarily again, this time inserting 2 and removing the second
variable of the basis, 5.




a1 a2 a3 a4 a5 a6 b

a1 1 1 −1 1 0 0 5
a5 0 −5 3 −2 1 0 −7
a6 0 3 −2 1 0 1 6







a1 a2 a3 a4 a5 a6 b

a1 1 0 −2
5

3
5

1
5 0 18

5
a2 0 1 −3

5
2
5 −1

5 0 7
5

a6 0 0 −1
5 −1

5
3
5 1 9

5




• Notice how one can keep track of who is in the basis by checking where 0/1’s
columns are.

• The solution is now feasible... pure luck.
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Simplex Method: and again...

• once again, pivot inserting 3 and removing the third variable of the basis, 6.




a1 a2 a3 a4 a5 a6 b

a1 1 0 −2
5

3
5

1
5 0 18

5
a2 0 1 −3

5
2
5 −1

5 0 7
5

a6 0 0 −
1

5
−1

5
3
5 1 9

5







a1 a2 a3 a4 a5 a6 b

a1 1 0 0 1 −1 −2 0
a2 0 1 0 1 −2 −3 −4
a3 0 0 1 1 −3 −5 −9




• horrible. moving randomly we have a now non-feasible degenerate basic
solution.

• yet we knew that pivoting randomly based only on yr,e 6= 0 would lead us
nowhere.
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Adding the reduced costs

• What happens when we also pivot the last line?

• Remember the last line is equal to v
def
=(c− z)′ in the beginning.

• Remember also that

(a) in pivot row arj ← arj/are.
(b) in pivot column are← 1, aie = 0 for i = 1, · · · , m, i 6= r: the eth column

becomes a matrix of zeros and a one.
(c) for all other elements aij ← aij −

arjaie

are

• Here, (a) does not apply, we cannot be in the pivot row.

• we have

◦ in pivot column ve = 0 : makes sense, reduced cost is zero for basis
elements.
◦ for all other elements vj ← vj −

arjve

are
.
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Adding the reduced costs

• Recapitulating, at each iteration of the pivot the matrix is exactly

. . . . . . . . . . . . . . . . . . ...
... B−1

I M ... ... B−1
I

... B−1
I b

. . . . . . . . . . . . . . . . . . ...

. . . (c− z) . . . −x0

• The pivot is thus applied on the m + 1× n + 1 tableau.

• The tableau contains everything we need, reduced costs, (minus)objective,
the coordinates of B−1

I b and B−1
I A
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Tableaux with Arbitrary Initial BFS
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Working around to go back to previous situation

• Suppose that we are given an arbitrary BFS I for the problem

maximize x0 = cTx

subject to

{
Ax = b

x ≥ 0

• We try to go back to the previous situation.
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Working around to go back to previous situation

• Perform a permutation of columns such that columns in positions i1, · · · , im
become in last positions n−m + 1, · · · , n.

• A is now [N, B] (N for non-basic part) and the system can be written as

{
NxN + BxB = b

cT
NxN + cT

BxB = x0

• Multiplying the first line by B−1,

B−1NxN + xB = B−1b thus xB = B−1b−B−1NxN

which when used for objective x0 yields

x0 = (cN − cT
BB−1N)TxN + cT

b B−1b
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Working around to go back to previous situation

• We can now use the same tableau:

. . . . . . . . . . . . . . . . . . ...
... B−1N ... ... I ... b

. . . . . . . . . . . . . . . . . . ...

. . . cT
N − zT

N . . . . . . 0 . . . −x0

• And can apply the simplex as defined for canonical feasible forms.
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Short Comment on Dictionaries

• A dictionary is a comparable compact form

maximize ζ = 4x2 + 3x3

subject to w1 = 5 − 2x1 − 3x2 − x3

w2 = 11 − 4x1 − x2 − 2x3

w3 = 8 − 3x1 − 4x2 − 2x3

x1, x2, x3, w1, w2, w3 ≥ 0.

where basic variables are kept on the top and non-basic are kept on the left.

• We save space (1/0 columns) but need to keep track of variable names.

• The constants on the left correspond to the last column in tableaux.

• The first line stands for reduced cost coefficients of nonbasic variables.

• The lower-right corresponds to minus the B−1
I A matrix for indices in O.

• Equivalent to Tableaux, rather used for educational purposes.
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