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General State-Space Models

@ State-space models also known as Hidden Markov models are
ubiquitous time series models in ecology, econometrics, engineering,
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statistics etc.

o Let {X,},-; be a latent/hidden Markov process defined by
Xi o g (1) and X (Xoo1 = xo-1) ~ fo (+[ xn-1) -

@ We only have access to a process { Y} },-; such that, conditional
upon {X,},~;, the observations are statistically independent and

Yol (Xo = xa) ~ 8o (+[xa) -

@ 0 is an unknown parameter of prior density p ().
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Examples of State-Space Models

e Canonical univariate SV model (Ghysels et al., 1996)
Xp=a+¢(Xpo1—a)+0V,,
Yy = exp (Xn/2) W,,

where X; ~ N (06,(7'2/ (1 —4)2)), v, id. N (0,1) and
Wi " N7 (0,1) and 8 = (a,, ).
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Examples of State-Space Models

e Canonical univariate SV model (Ghysels et al., 1996)
Xp=a+¢(Xpo1—a)+0V,,
Y, =exp (X,/2) W,

i.i.d

where X; ~ N (a,02/ (1 —¢?)), V, <~ N (0,1) and
Wi " N7 (0,1) and 8 = (a,, ).

o Wishart processes for multivariate SV (Gourieroux et al., 2009)

Xy MX"’1+vn'", v N(0,B), m=1,... K
To= YR X (xm)T
Yn|2n NN(O,Zn)

where § = (M, E).
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Examples of State-Space Models

e US./U.K. exchange rate model (Engle & Kim, 1999). Log exchange
rate values Y, are modeled through

Yn =ap+ N
[X,, — an—l + Ua Vn,lv
;7n = 3177"71 + 3277,,,2 + aﬂ,Zn V",2

where V1 i'i'\g'/\/’(O,l) V2 Hid- N (0,1) and Z, € {1,2,3,4} is an
unobserved Markov chain of unknown transition matrix.
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Examples of State-Space Models

e US./U.K. exchange rate model (Engle & Kim, 1999). Log exchange
rate values Y, are modeled through

Yn =ap+ N
[X,, — an—l + Ua Vn,lv
;7n = 3177"71 + 3277,,,2 + aﬂ,Zn V",2

where V1 i'i'\g'/\/’(O,l) V2 Hid- N (0,1) and Z, € {1,2,3,4} is an
unobserved Markov chain of unknown transition matrix.

@ This can be reformulated as a state-space by selecting
T
Xn = [DC" Mo Mh-1 Z”] and 6 = (31, a2,0q,01:4, P) .
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Other Applications

e Macroeconomics: dynamic generalized stochastic equilibrium (Flury
& Shephard, Econometrics Review, 2011; Smith, J. Econometrics,
2012).
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@ Econometrics: stochastic volatility models, nonlinear term structures
(Li, JBES, 2011; Giordani, Kohn & Pitt, JCGS, 2011; Andreasen
2011)

o Epidemiology: disease dynamic models (lonides et al., JASA, 2011).

e Ecology: population dynamic (Thomas et al., 2009; Peters et al.,
2011).

e Environmentrics: Phytoplankton-Zooplankton model (Parslow et al.,
2009), Paleoclimate reconstruction (Rougier, 2010).

e Biochemical Systems: stochastic kinetic models (Wilkinson &
Golightly, 2010).
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Bayesian Inference in General State-Space Models

@ Given a collection of observations y1.7 := (y1,..., y7), we are
interested in carrying out inference about 6 and Xj.1 := (X1, ..., X7T).
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Bayesian Inference in General State-Space Models

@ Given a collection of observations y1.7 := (y1,..., y7), we are

interested in carrying out inference about 6 and Xj.1 := (X1, ..., X7T).

@ Inference relies on the posterior density

p(0. x.7iyi.1) = p(O|yiT)po (x1:7| y1:7)
o« p(0 x1.7,y1:7)
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Bayesian Inference in General State-Space Models

@ Given a collection of observations y1.7 := (y1,..., y7), we are
interested in carrying out inference about 6 and Xj.1 := (X1, ..., X7T).

@ Inference relies on the posterior density

p(0. x.7iyi.1) = p(O|yiT)po (x1:7| y1:7)
o« p(0 x1.7,y1:7)

where
T T
p(91X1:T:y1:T) °<P(9) Ho (Xl)HfG(Xn‘Xn 1 H )/n|Xn
n=2 n=1

@ No closed-form expression for p (6, x1.7| y1.7), numerical
approximations are required.
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Common MCMC Approaches and Limitations

o MCMC lIdea: Simulate an ergodic Markov chain {0 (i), X1.7 (1) },5¢
of invariant distribution p (6, x1.7| y1.7)... infinite number of
possibilities.
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Common MCMC Approaches and Limitations

e MCMC Idea: Simulate an ergodic Markov chain {60 (i), Xi.7 (i)}izo
of invariant distribution p (6, x1.7| y1.7)... infinite number of
possibilities.

@ Typical strategies consists of updating iteratively Xi.7 conditional
upon 6 then 8 conditional upon Xi.71.

@ To update Xi.7 conditional upon 6, use MCMC kernels updating
subblocks according to pp ( Xn:n+k—1| YnintK—1+ Xn—1, Xn+K )-

@ Standard MCMC algorithms are inefficient if 8 and Xi.1 are strongly
correlated.

Strategy impossible to implement when it is only possible to sample
from the prior but impossible to evaluate it pointwise.
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Metropolis-Hastings (MH) Sampling

@ To bypass these problems, we want to update jointly 6 and Xj.1.
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Metropolis-Hastings (MH) Sampling

@ To bypass these problems, we want to update jointly 6 and Xj.1.

@ Assume that the current state of our Markov chain is (6, x1.7), we
propose to update simultaneously the parameter and the states using
a proposal

q (0%, x1.7)[ (0.x:7)) = q (67[0) o (x(.7[y1:7) -
@ The proposal (6, x;.1) is accepted with MH acceptance probability

p (6% xiryT) (T, )| (7. 67))

Y @t r) a (0 0] (ir 0))

@ Problem: Designing a proposal gg« (x;.7|y1:7) such that the
acceptance probability is not extremely small is very difficult.
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“Idealized” Marginal MH Sampler

e Consider the following so-called marginal Metropolis-Hastings (MH)
algorithm which uses as a proposal
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e Consider the following so-called marginal Metropolis-Hastings (MH)
algorithm which uses as a proposal

q (7,0 (xa:7.0)) = q(67[6) por (x| y1:7)

@ The MH acceptance probability is
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“Idealized” Marginal MH Sampler

e Consider the following so-called marginal Metropolis-Hastings (MH)
algorithm which uses as a proposal

q (7,0 (xa:7.0)) = q(67[6) por (x| y1:7)

@ The MH acceptance probability is

A PO X yar) g (O, 9)\(Xn )
p (0, x.7y1.7) q((xf.7.0" |(X1T9)

A P i) p(67) (6] 6°)

pe(y T)p(0) q(07]0)

@ In this MH algorithm, Xi.7 has been essentially integrated out.
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Implementation Issues

o Problem 1: We do not know py (y1.7) = [ pg (x1.7, y1.7) dx1.7
analytically.
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o Problem 1: We do not know py (y1.7) = [ pg (x1.7, y1.7) dx1.7
analytically.

@ Problem 2: We do not know how to sample from py ( x1.7| y1:7) -

e “Idea”: Use SMC approximations of pg (x1.7|y1.7) and pg (y1.7).
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Sequential Monte Carlo aka Particle Filters

@ Given 0, SMC methods provide approximations of pg (x1.7|y1.7) and
po (y1:7)-

(Kyoto, 15th June 2011) 11/ 32



Sequential Monte Carlo aka Particle Filters

@ Given 0, SMC methods provide approximations of pg (x1.7|y1.7) and
po (y1:7)-
e To sample from pg (x1.7| y1.7), SMC proceed sequentially by first

approximating py (x1|y1) and pg (y1) at time 1 then py (x1:2| y1:2)
and pg (y1:2) at time 2 and so on.

(Kyoto, 15th June 2011) 11/ 32



Sequential Monte Carlo aka Particle Filters

@ Given 0, SMC methods provide approximations of pg (x1.7|y1.7) and
po (y1:7)-

e To sample from pg (x1.7| y1.7), SMC proceed sequentially by first
approximating py (x1|y1) and pg (y1) at time 1 then py (x1:2| y1:2)
and pg (y1:2) at time 2 and so on.

@ SMC methods approximate the distributions of interest via a cloud of

N particles which are propagated using Importance Sampling and
Resampling steps.
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Importance Sampling

@ Assume you have at time n—1

N
Po (X1:n—1| y1:n—1) = Z X1n1)-
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Importance Sampling

@ Assume you have at time n—1
1N
/p\G (Xlznfl | y1:n71) = N Igl 5X1k:n—1 (Xl:nfl) .
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Importance Sampling

@ Assume you have at time n— 1
1N
/p\G (Xlznfl | y1:n71> = N Igl 5X1k:n—1 (Xl:nfl) .

@ By sampling Yﬁ ~ fy (\ X,f_l) and setting Yll(:n = (Xl":n_l,Yﬁ) then

N
pQ(Xln’}/lnl Z Xln .

@ Our target at time n is
8o (Yn| Xn) Po (Xl n| Yi:n— 1)
ng }/n| Xn) Po (Xl n‘ Yi:n— 1) dxi:n
so by substituting Py (x1:n| Y1:n—1) to pg (X1:n| y1:n—1) we obtain

Po (X1n|}/1 n)

N

_ ~k

o (xaunl yin) = Y2 Wid (xan) Wi o g (3l X1y
k=1 n
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Resampling

e We have a “weighted” approximation By ( Xi:n| ¥1:n) of P (X1:n| y1:n)

N
Po (X1:n| y1:n) = Z Y (x1:n) -
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e We have a “weighted” approximation By ( Xi:n| ¥1:n) of P (X1:n| y1:n)

N
Po (X1:n| y1:n) = Z Y (x1:n) -

@ To obtain N samples Xfm approximately distributed according to
Po (X1:n| ¥1:n), wWe just resample

Xlk:n ~ Py (| )/1:n>
to obtain

kX1,,.
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Resampling

e We have a “weighted” approximation By ( Xi:n| ¥1:n) of P (X1:n| y1:n)

N
Po (X1:n| y1:n) = Z Y (x1:n) -

@ To obtain N samples Xfm approximately distributed according to
Po (X1:n| ¥1:n), wWe just resample

Xlk:n ~ Py (‘ yl:”)
to obtain
- 1Y
Po (X1:n| y1:n) = N Z 5X1k‘n (Xlzn) .
k=1 '

o Particles with high weights are copied multiples times, particles with
low weights die.
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Bootstrap Filter (Gordon, Salmond & Smith, 1993)

At time n=1
e Sample Yi( ~ Hp (+) then
N

_ <k
Po(xily) =), W1k5y§ (), W o gy <y1|X1>-
k=1
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Bootstrap Filter (Gordon, Salmond & Smith, 1993)

At timen=1
e Sample Yi( ~ Hp (+) then
¥ k k ~k
ﬁ@ (X1|}/1) - Z Wl 5Yk (X]_), Wl X gy <y1|Xl> i
k=1 !
o Resample X ~ Py (x1| y1) to obtain pg (x1]y1) = & L, Oxx (x1)-
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SMC Output

o At time T, we obtain the following approximation of the posterior of
interest

Po (x1.7|y1:7) = 725)(,( (dxi.7)

and an approximation of py (y1.7) is given by

gie

:ﬂ

2 \

Po (y1:7) = Po (1 HP@ Yol y1:n-1)

n=2 n

i (yn\Xk>>
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SMC Output

o At time T, we obtain the following approximation of the posterior of
interest

Po (x1.7|y1:7) = 725)(,( (dxi.7)

and an approximation of py (y1.7) is given by

T T 1 N
Po (}/I:T) = Py ()/1) Hﬁ@ (yn’}/l:nfl) = H (N Z 8o <Yn‘X,§(>> .
k=1

n=2 n=1

@ These approximations are asymptotically (i.e. N — o0) consistent
under very weak assumptions.
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Some Theoretical Results

e Under mixing assumptions (Del Moral, 2004), we have

-
1L (XeT €-)=po (| yi:1) |l < Ceﬁ

where Xi.7 ~ E [pg (-] y1.7)]-
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e Under mixing assumptions (Del Moral, 2004), we have

-
1L (XeT €-)=po (| yi:1) |l < Ceﬁ

where X1.7 ~ E [P (-] y1:7)].
e Under mixing assumptions (Del Moral et al., 2010) we also have

V [B . T
[59 (7)) < Dy—.
Py (y1.7) N
@ Loosely speaking, the performance of SMC only degrade linearly with
time rather than exponentially for naive approaches.

@ Problem: We cannot compute analytically the particle filter proposal
go (x1:7| y1.7) = E [Pg (x1.7| y1.7)] as it involves an expectation w.r.t
all the variables appearing in the particle algorithm...
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“Idealized” Marginal MH Sampler

At iteration i

@ Sample 0" ~ q(-]6 (i —1)).
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“Idealized” Marginal MH Sampler

At iteration i
e Sample 0" ~ q (|6 (i—1)).
© Sample X'y ~ py: (| y1:7) -
e With probability
po (y1:7) P (687) qg(6(i—1)6%)
Poi—1) Y1) p (0 (i—1)) q (676 (i —1))

set 0 (i) = 6", X1.7 (i) = X{.1 otherwise set § (i) =0 (i — 1),
Xt (1) =Xer (1—1).

1A
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Particle Marginal MH Sampler

At iteration i

e Sample 0" ~ g (|0 (i —1)) and run an SMC algorithm to obtain
Pe+ (x1:7| y1.7) and Py (y1.7)-
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Particle Marginal MH Sampler

At iteration i

e Sample 0" ~ g (|0 (i —1)) and run an SMC algorithm to obtain
Pe+ (x1:7| y1.7) and Py (y1.7)-

e Sample X} ~ Py (| y1.7) -

@ With probability

Por (y1:7) p (67) q(8(i—1)/6)
59(,'71) W) p(@(i—1))q(070(i—1))

set 0 (/) = 0", Xi.7 (i) = X{.7 otherwise set 6 (i) =6 (i — 1),
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Validity of the Particle Marginal MH Sampler

@ Assume that the ‘idealized’ marginal MH sampler is irreducible and
aperiodic then, under very weak assumptions, the PMMH sampler
generates a sequence {9() X1.7 (i)} whose marginal distributions
{LN(0(i), X1.7(i) € -)} satisfy for any N > 1

¥ @) X () € ) — oy, — 028 — o
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Validity of the Particle Marginal MH Sampler

@ Assume that the ‘idealized’ marginal MH sampler is irreducible and
aperiodic then, under very weak assumptions, the PMMH sampler
generates a sequence {9() X1.7 (i)} whose marginal distributions
{LN(0(i), X1.7(i) € -)} satisfy for any N > 1

¥ @) X () € ) — oy, — 028 — o

@ Corollary of a more general result: the PMMH sampler is a standard
MH sampler of target distribution 77"V and proposal gV defined on an
extended space associated to all the variables used to generate the
proposal.
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Explicit Structure of the Target Distribution

@ For pedagogical reasons, we limit ourselves to the case where T = 1.
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@ The artificial target is
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Explicit Structure of the Target Distribution

@ For pedagogical reasons, we limit ourselves to the case where T = 1.
@ The proposal is

o (005%) () =0 @10 [T 7)o

@ The artificial target is

_ . p (6, x|y N ”
N(eykvxf’N) = 7( ,\;‘ 1) H Ho (X1")

m=1;m#k

1p(8)g (yilx) ﬁ o (<)

N po(y1) e
@ We have indeed
7t (6%, k*, XN _ p(0") wXier (nlx)
G (6%, k*, x;EN) [ (6, k, ¢ MY) — q(67]0) po (1)
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“Idealized” Block Gibbs Sampler

At iteration i

o Sample 6 (i) ~ p (:[y1.7, X1.7 (i — 1)).
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“Idealized” Block Gibbs Sampler

At iteration |
4 Sample 0 (I) ~ p ('|_y1;7‘, Xl:T (I — 1))
L Sample Xl:T (I) ~ p ('|y1:7‘, 0 (I))

o Naive particle approximation where Xi.7 (i) ~ p (+|y1.7,6 (1)) is
substituted to Xi.7 (i) ~ p(-|y1.7,0 (i) is obviously incorrect.
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Particle Gibbs Sampler

@ A (collapsed) Gibbs sampler to sample from 7" for T =1 can be
implemented using

a (G,ka‘ k'X{() =p(9|y1,><1k) f[#kﬂe (")
I s

k
AV (K =k 04" = 7 lxg)
Yi=180 (}/1|X{)
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implemented using

a (G,ka‘ k'X{() =p(9|y1,><1k) f[#kﬂe (")
I s

k
7N (K: k|9,x11:N> _ Ife(yllxl) -
Yiti 8 (nlx])

@ Note that even for fixed 68, this is a non-standard MCMC update for
po (x1|y1). This generalizes Baker's acceptance rule (Baker, 1965).
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Particle Gibbs Sampler

@ A (collapsed) Gibbs sampler to sample from 7" for T =1 can be
implemented using

a (G,ka‘ k'X{() =p(9|y1,><1k) f[#kﬂe (")
I s

k
A (K= K|o. ™) = ,fe(mxl) .
Yi=180 (}/1| X{)
@ Note that even for fixed 68, this is a non-standard MCMC update for
po (x1|y1). This generalizes Baker's acceptance rule (Baker, 1965).

@ The target and associated Gibbs sampler can be generalized to T > 1.
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Particle Gibbs Sampler

At iteration i
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Particle Gibbs Sampler

At iteration i
o Sample 6 (i) ~ p (:|yr.7, X.7 (i —1)).
@ Run a conditional SMC algorithm for 6 (i) consistent with
X1.7 (i — 1) and its ancestral lineage.
e Sample X1.7 (/) ~ P (-|y1.7,0 (i)) from the resulting approximation
(hence its ancestral lineage too).

o Proposition. Assume that the ‘ideal’ Gibbs sampler is irreducible and
aperiodic then under very weak assumptions the particle Gibbs
sampler generates a sequence {60 (i), X1.7 (i)} such that for any
N>2

£ (0 @), X7 (i) €)= p(:[y1:7)|| = 0asi— oo
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Conditional SMC Algorithm

At time 1

o For m # b¥, sample X" ~ 1, (+) and set W™ & gp (y1] X{", ),
Zrlyqzl wW" = 1.
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Conditional SMC Algorithm

At time 1

o For m # b¥, sample X" ~ 1, (+) and set W™ & gp (y1] X{", ),
Zrlyqzl wW" = 1.
o Resample N — 1 times from By (x1|y1) = XN_, W{"éxm (x1) to

.| bk bk bk
obtain { X; and set X = X;'.

At timen=2,..., T

oForm#b,’j,sampIeX’”Nﬁg( ) setXln—(Xln L X7 )
and W, o gy (ya| Xi7) Ty W7 = 1.
@ Resample N — 1 times from By (x1:n| y1:n) = Zm 1 Wildxm (x1:n) to
obtain {XLn”} and set Ylf,, = X1:77-
At timen=T

o Sample Xl:T ~ /ﬁG ("ylsT) :
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Nonlinear State-Space Model

@ Consider the following model

1 n—1

X, = §Xn71+25TX371+8c051.2n+ Vi,
X?

Yoo = ot W

where V, ~ N/ (0,(73) W, ~ N (O,Uﬁ,) and X; ~ N (0,52) i
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Nonlinear State-Space Model

@ Consider the following model

1 Xn—l

X, = §Xn71+2517X371+8c051.2n+ Vi,
X?

Yoo = 0t Wa

where V, ~ N/ (0,(73) W, ~ N (O,Uﬁ,) and X; ~ N (0,52) i
@ Use the prior for {X,} as proposal distribution.

o For a fixed 0, we evaluate the expected acceptance probability as a
function of N.
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Average Acceptance Probability
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Inference for Stochastic Kinetic Models

e Two species X} (prey) and X? (predator)

Pr( XL ge=xi-H1, X2, o=x?| xt, x?) = axtdt + o (dt),
Pr( XL go=xt—1, X2, gy=xt+1| xt, x?) = Bx¢ xpdt + o (dt),

Pr( XL ge=xt, X2, ge=x¢—1| xt, x?) = yx}dt + o (dt),

observed at discrete times

n

Y, = X2 + W, with W, " N (0,07) .
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e Two species X} (prey) and X? (predator)

Pr( XL ge=xi-H1, X2, o=x?| xt, x?) = axtdt + o (dt),

trdt—
Pr( XL go=xt—1, X2, gy=xt+1| xt, x?) = Bx¢ xpdt + o (dt),

Pr( XL ge=xt, X2, ge=x¢—1| xt, x?) = yx}dt + o (dt),

observed at discrete times
Y, = X2y + W, with W, = A (0,02) .

n

@ We are interested in the kinetic rate constants 0 = (a, B, ) a priori
distributed as (Boys et al., 2008; Kunsch, 2011)

a~G(1,10), B~G(1,025), v~ G(1,75).
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Inference for Stochastic Kinetic Models

e Two species X} (prey) and X? (predator)

Pr( XL ge=xi-H1, X2, o=x?| xt, x?) = axtdt + o (dt),

trdt—
Pr( XL go=xt—1, X2, gy=xt+1| xt, x?) = Bx¢ xpdt + o (dt),

Pr( XL ge=xt, X2, ge=x¢—1| xt, x?) = yx}dt + o (dt),

observed at discrete times

Y, = X2 + W, with W, " N (0,07) .

n

@ We are interested in the kinetic rate constants 0 = (a, B, ) a priori
distributed as (Boys et al., 2008; Kunsch, 2011)

a~G(1,10), B~G(1,025), v~ G(1,75).

o MCMC methods require reversible jumps, Particle MCMC requires
only forward simulation.
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Experimental Results
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Autocorrelation Functions
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Discussion

@ PMCMC methods allow us to design ‘good’ high dimensional
proposals based only on low dimensional (and potentially
unsophisticated) proposals.
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Discussion

@ PMCMC methods allow us to design ‘good’ high dimensional
proposals based only on low dimensional (and potentially
unsophisticated) proposals.

@ PMCMOC allow us to perform Bayesian inference for dynamic models
for which only forward simulation is possible.

@ Whenever an unbiased estimate of the likelihood function is available,
“exact” Bayesian inference is possible.

@ More precise quantitative convergence results need to be established.
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