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General State-Space Models

State-space models also known as Hidden Markov models are
ubiquitous time series models in ecology, econometrics, engineering,
statistics etc.

Let {Xn}n≥1 be a latent/hidden Markov process defined by

X1 ∼ µθ (·) and Xn | (Xn−1 = xn−1) ∼ fθ ( ·| xn−1) .

We only have access to a process {Yn}n≥1 such that, conditional
upon {Xn}n≥1, the observations are statistically independent and

Yn | (Xn = xn) ∼ gθ ( ·| xn) .

θ is an unknown parameter of prior density p (θ) .
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Examples of State-Space Models

Canonical univariate SV model (Ghysels et al., 1996)

Xn = α+ φ (Xn−1 − α) + σVn,

Yn = exp (Xn/2)Wn,

where X1 ∼ N
(
α, σ2/

(
1− φ2

))
, Vn

i.i.d.∼ N (0, 1) and
Wm

i.i.d.∼ N (0, 1) and θ = (α, φ, σ).

Wishart processes for multivariate SV (Gourieroux et al., 2009)

Xmn = MX
m
n−1 + V

m
n , V

m
n

i.i.d.∼ N (0,Ξ) , m = 1, ...,K
Σn = ∑K

m=1 X
m
n (Xmn )

T ,
Yn |Σn ∼ N (0,Σn) .

where θ = (M,Ξ).
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Examples of State-Space Models

U.S./U.K. exchange rate model (Engle & Kim, 1999). Log exchange
rate values Yn are modeled through

Yn = αn + ηn,

αn = αn−1 + σαVn,1,

ηn = a1ηn−1 + a2ηn−2 + ση,ZnVn,2

where Vn,1
i.i.d.∼ N (0, 1) , Vn,2 i.i.d.∼ N (0, 1) and Zn ∈ {1, 2, 3, 4} is an

unobserved Markov chain of unknown transition matrix.

This can be reformulated as a state-space by selecting
Xn =

[
αn ηn ηn−1 Zn

]T and θ = (a1, a2, σα, σ1:4,P) .
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Other Applications

Macroeconomics: dynamic generalized stochastic equilibrium (Flury
& Shephard, Econometrics Review, 2011; Smith, J. Econometrics,
2012).

Econometrics: stochastic volatility models, nonlinear term structures
(Li, JBES, 2011; Giordani, Kohn & Pitt, JCGS, 2011; Andreasen
2011)

Epidemiology: disease dynamic models (Ionides et al., JASA, 2011).
Ecology: population dynamic (Thomas et al., 2009; Peters et al.,
2011).

Environmentrics: Phytoplankton-Zooplankton model (Parslow et al.,
2009), Paleoclimate reconstruction (Rougier, 2010).

Biochemical Systems: stochastic kinetic models (Wilkinson &
Golightly, 2010).
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Bayesian Inference in General State-Space Models

Given a collection of observations y1:T := (y1, ..., yT ), we are
interested in carrying out inference about θ and X1:T := (X1, ...,XT ) .

Inference relies on the posterior density

p ( θ, x1:T | y1:T ) = p ( θ| y1:T ) pθ (x1:T | y1:T )

∝ p (θ, x1:T , y1:T )

where

p (θ, x1:T , y1:T ) ∝ p (θ) µθ (x1)
T

∏
n=2

fθ (xn | xn−1)
T

∏
n=1

gθ (yn | xn) .

No closed-form expression for p ( θ, x1:T | y1:T ), numerical
approximations are required.
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Common MCMC Approaches and Limitations

MCMC Idea: Simulate an ergodic Markov chain {θ (i) ,X1:T (i)}i≥0
of invariant distribution p ( θ, x1:T | y1:T )... infinite number of
possibilities.

Typical strategies consists of updating iteratively X1:T conditional
upon θ then θ conditional upon X1:T .

To update X1:T conditional upon θ, use MCMC kernels updating
subblocks according to pθ (xn:n+K−1| yn:n+K−1, xn−1, xn+K ).

Standard MCMC algorithms are ineffi cient if θ and X1:T are strongly
correlated.

Strategy impossible to implement when it is only possible to sample
from the prior but impossible to evaluate it pointwise.
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Metropolis-Hastings (MH) Sampling

To bypass these problems, we want to update jointly θ and X1:T .

Assume that the current state of our Markov chain is (θ, x1:T ), we
propose to update simultaneously the parameter and the states using
a proposal

q ( (θ∗, x∗1:T )| (θ, x1:T )) = q ( θ∗| θ) qθ∗ (x
∗
1:T | y1:T ) .

The proposal (θ∗, x∗1:T ) is accepted with MH acceptance probability

1∧ p ( θ∗, x∗1:T | y1:T )

p ( θ, x1:T | y1:T )

q ( (x1:T , θ)| (x∗1:T , θ
∗))

q
(
(x∗1:T , θ

∗)
∣∣ (x1:T , θ)

)
Problem: Designing a proposal qθ∗ (x

∗
1:T | y1:T ) such that the

acceptance probability is not extremely small is very diffi cult.
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“Idealized”Marginal MH Sampler

Consider the following so-called marginal Metropolis-Hastings (MH)
algorithm which uses as a proposal

q ( (x∗1:T , θ
∗)| (x1:T , θ)) = q ( θ∗| θ) pθ∗ (x

∗
1:T | y1:T ) .

The MH acceptance probability is

1∧ p ( θ∗, x∗1:T | y1:T )

p ( θ, x1:T | y1:T )

q ( (x1:T , θ)| (x∗1:T , θ
∗))

q
(
(x∗1:T , θ

∗)
∣∣ (x1:T , θ)

)
= 1∧ pθ∗ (y1:T ) p (θ

∗)

pθ (y1:T ) p (θ)
q ( θ| θ∗)
q ( θ∗| θ)

In this MH algorithm, X1:T has been essentially integrated out.
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Implementation Issues

Problem 1: We do not know pθ (y1:T ) =
∫
pθ (x1:T , y1:T ) dx1:T

analytically.

Problem 2: We do not know how to sample from pθ (x1:T | y1:T ) .

“Idea”: Use SMC approximations of pθ (x1:T | y1:T ) and pθ (y1:T ).
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Sequential Monte Carlo aka Particle Filters

Given θ, SMC methods provide approximations of pθ (x1:T | y1:T ) and
pθ (y1:T ).

To sample from pθ (x1:T | y1:T ), SMC proceed sequentially by first
approximating pθ (x1| y1) and pθ (y1) at time 1 then pθ (x1:2| y1:2)
and pθ (y1:2) at time 2 and so on.

SMC methods approximate the distributions of interest via a cloud of
N particles which are propagated using Importance Sampling and
Resampling steps.
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Importance Sampling

Assume you have at time n− 1

p̂θ (x1:n−1| y1:n−1) =
1
N

N

∑
k=1

δX k1:n−1
(x1:n−1) .

By sampling X
k
n ∼ fθ

(
·|X kn−1

)
and setting X

k
1:n =

(
X k1:n−1,X

k
n

)
then

p̂θ (x1:n | y1:n−1) =
1
N

N

∑
k=1

δ
X
k
1:n
(x1:n) .

Our target at time n is

pθ (x1:n | y1:n) =
gθ (yn | xn) pθ (x1:n | y1:n−1)∫
gθ (yn | xn) pθ (x1:n | y1:n−1) dx1:n

so by substituting p̂θ (x1:n | y1:n−1) to pθ (x1:n | y1:n−1) we obtain

pθ (x1:n | y1:n) =
N

∑
k=1

W k
n δ

X
k
1:n
(x1:n) , W k

n ∝ gθ

(
yn |X

k
1:n

)
.
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n ∼ fθ

(
·|X kn−1

)
and setting X

k
1:n =

(
X k1:n−1,X

k
n

)
then

p̂θ (x1:n | y1:n−1) =
1
N

N

∑
k=1

δ
X
k
1:n
(x1:n) .

Our target at time n is

pθ (x1:n | y1:n) =
gθ (yn | xn) pθ (x1:n | y1:n−1)∫
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Resampling

We have a “weighted”approximation pθ (x1:n | y1:n) of pθ (x1:n | y1:n)

pθ (x1:n | y1:n) =
N

∑
k=1

W k
n δ

X
k
1:n
(x1:n) .

To obtain N samples X k1:n approximately distributed according to
pθ (x1:n | y1:n), we just resample

X k1:n ∼ pθ ( ·| y1:n)

to obtain

p̂θ (x1:n | y1:n) =
1
N

N

∑
k=1

δX k1:n
(x1:n) .

Particles with high weights are copied multiples times, particles with
low weights die.

(Kyoto, 15th June 2011) 13 / 32



Resampling

We have a “weighted”approximation pθ (x1:n | y1:n) of pθ (x1:n | y1:n)

pθ (x1:n | y1:n) =
N

∑
k=1

W k
n δ

X
k
1:n
(x1:n) .

To obtain N samples X k1:n approximately distributed according to
pθ (x1:n | y1:n), we just resample

X k1:n ∼ pθ ( ·| y1:n)

to obtain

p̂θ (x1:n | y1:n) =
1
N

N

∑
k=1

δX k1:n
(x1:n) .

Particles with high weights are copied multiples times, particles with
low weights die.

(Kyoto, 15th June 2011) 13 / 32



Resampling

We have a “weighted”approximation pθ (x1:n | y1:n) of pθ (x1:n | y1:n)

pθ (x1:n | y1:n) =
N

∑
k=1

W k
n δ

X
k
1:n
(x1:n) .

To obtain N samples X k1:n approximately distributed according to
pθ (x1:n | y1:n), we just resample

X k1:n ∼ pθ ( ·| y1:n)

to obtain

p̂θ (x1:n | y1:n) =
1
N

N

∑
k=1

δX k1:n
(x1:n) .

Particles with high weights are copied multiples times, particles with
low weights die.

(Kyoto, 15th June 2011) 13 / 32



Bootstrap Filter (Gordon, Salmond & Smith, 1993)

At time n = 1

Sample X
k
1 ∼ µθ (·) then

pθ (x1| y1) =
N

∑
k=1

W k
1 δ

X
k
1
(x1) , W k

1 ∝ gθ

(
y1|X

k
1

)
.

Resample X k1 ∼ pθ (x1| y1) to obtain p̂θ (x1| y1) = 1
N ∑N

i=1 δX k1 (x1).

At time n ≥ 2
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, set X

k
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SMC Output

At time T , we obtain the following approximation of the posterior of
interest

p̂θ (x1:T | y1:T ) =
1
N

N

∑
k=1

δX k1:T
(dx1:T )

and an approximation of pθ (y1:T ) is given by

p̂θ (y1:T ) = p̂θ (y1)
T

∏
n=2

p̂θ (yn | y1:n−1) =
T

∏
n=1

(
1
N

N

∑
k=1

gθ

(
yn |X kn

))
.

These approximations are asymptotically (i.e. N → ∞) consistent
under very weak assumptions.
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Some Theoretical Results

Under mixing assumptions (Del Moral, 2004), we have

‖L (X1:T ∈ ·)− pθ ( ·| y1:T )‖tv ≤ Cθ
T
N

where X1:T ∼ E [p̂θ ( ·| y1:T )].

Under mixing assumptions (Del Moral et al., 2010) we also have

V [p̂θ (y1:T )]

p2θ (y1:T )
≤ Dθ

T
N
.

Loosely speaking, the performance of SMC only degrade linearly with
time rather than exponentially for naive approaches.

Problem: We cannot compute analytically the particle filter proposal
qθ (x1:T | y1:T ) = E [p̂θ (x1:T | y1:T )] as it involves an expectation w.r.t
all the variables appearing in the particle algorithm...
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“Idealized”Marginal MH Sampler

At iteration i

Sample θ∗ ∼ q ( ·| θ (i − 1)).

Sample X ∗1:T ∼ pθ∗ ( ·| y1:T ) .

With probability

1∧ pθ∗ (y1:T ) p (θ
∗)

pθ(i−1) (y1:T ) p (θ (i − 1))
q ( θ (i − 1)| θ∗)
q ( θ∗| θ (i − 1))

set θ (i) = θ∗, X1:T (i) = X ∗1:T otherwise set θ (i) = θ (i − 1),
X1:T (i) = X1:T (i − 1) .
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Particle Marginal MH Sampler

At iteration i

Sample θ∗ ∼ q ( ·| θ (i − 1)) and run an SMC algorithm to obtain
p̂θ∗ (x1:T | y1:T ) and p̂θ∗ (y1:T ).

Sample X ∗1:T ∼ p̂θ∗ ( ·| y1:T ) .

With probability

1∧ p̂θ∗ (y1:T ) p (θ
∗)

p̂θ(i−1) (y1:T ) p (θ (i − 1))
q ( θ (i − 1)| θ∗)
q ( θ∗| θ (i − 1))

set θ (i) = θ∗, X1:T (i) = X ∗1:T otherwise set θ (i) = θ (i − 1),
X1:T (i) = X1:T (i − 1) .
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Validity of the Particle Marginal MH Sampler

Assume that the ‘idealized’marginal MH sampler is irreducible and
aperiodic then, under very weak assumptions, the PMMH sampler
generates a sequence {θ (i) ,X1:T (i)} whose marginal distributions{
LN (θ (i) ,X1:T (i) ∈ ·)

}
satisfy for any N ≥ 1∥∥∥LN (θ (i) ,X1:T (i) ∈ ·)− p( ·| y1:T )

∥∥∥
TV
→ 0 as i → ∞ .

Corollary of a more general result: the PMMH sampler is a standard
MH sampler of target distribution π̃N and proposal q̃N defined on an
extended space associated to all the variables used to generate the
proposal.
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Explicit Structure of the Target Distribution

For pedagogical reasons, we limit ourselves to the case where T = 1.

The proposal is

q̃N
((

θ∗, k∗, x∗1:N
1

)∣∣∣ (θ, k , x1:N
1

))
= q ( θ∗| θ)

N

∏
m=1

µθ∗ (x
∗m
1 ) w k

∗
1

The artificial target is

π̃N
(

θ, k , x1:N
1

)
=

p
(

θ, xk1
∣∣ y1)

N

N

∏
m=1;m 6=k

µθ (x
m
1 )

=
1
N
p (θ) gθ

(
y1| xk1

)
pθ (y1)

N

∏
m=1

µθ (x
m
1 )

We have indeed

π̃
(
θ∗, k∗, x∗1:N

1

)
q̃N
((

θ∗, k∗, x∗1:N
1

)∣∣ (θ, k, x1:N
1

)) = p (θ∗)
q ( θ∗| θ)

1
N ∑N

i=1 gθ∗
(
y1| x∗i1

)
pθ (y1)

(Kyoto, 15th June 2011) 20 / 32



Explicit Structure of the Target Distribution

For pedagogical reasons, we limit ourselves to the case where T = 1.
The proposal is

q̃N
((

θ∗, k∗, x∗1:N
1

)∣∣∣ (θ, k , x1:N
1

))
= q ( θ∗| θ)

N

∏
m=1

µθ∗ (x
∗m
1 ) w k

∗
1

The artificial target is

π̃N
(

θ, k , x1:N
1

)
=

p
(

θ, xk1
∣∣ y1)

N

N

∏
m=1;m 6=k

µθ (x
m
1 )

=
1
N
p (θ) gθ

(
y1| xk1

)
pθ (y1)

N

∏
m=1

µθ (x
m
1 )

We have indeed

π̃
(
θ∗, k∗, x∗1:N

1

)
q̃N
((

θ∗, k∗, x∗1:N
1

)∣∣ (θ, k, x1:N
1

)) = p (θ∗)
q ( θ∗| θ)

1
N ∑N

i=1 gθ∗
(
y1| x∗i1

)
pθ (y1)

(Kyoto, 15th June 2011) 20 / 32



Explicit Structure of the Target Distribution

For pedagogical reasons, we limit ourselves to the case where T = 1.
The proposal is

q̃N
((

θ∗, k∗, x∗1:N
1

)∣∣∣ (θ, k , x1:N
1

))
= q ( θ∗| θ)

N

∏
m=1

µθ∗ (x
∗m
1 ) w k

∗
1

The artificial target is

π̃N
(

θ, k , x1:N
1

)
=

p
(

θ, xk1
∣∣ y1)

N

N

∏
m=1;m 6=k

µθ (x
m
1 )

=
1
N
p (θ) gθ

(
y1| xk1

)
pθ (y1)

N

∏
m=1

µθ (x
m
1 )

We have indeed

π̃
(
θ∗, k∗, x∗1:N

1

)
q̃N
((

θ∗, k∗, x∗1:N
1

)∣∣ (θ, k, x1:N
1

)) = p (θ∗)
q ( θ∗| θ)

1
N ∑N

i=1 gθ∗
(
y1| x∗i1

)
pθ (y1)

(Kyoto, 15th June 2011) 20 / 32



Explicit Structure of the Target Distribution

For pedagogical reasons, we limit ourselves to the case where T = 1.
The proposal is

q̃N
((

θ∗, k∗, x∗1:N
1

)∣∣∣ (θ, k , x1:N
1

))
= q ( θ∗| θ)

N

∏
m=1

µθ∗ (x
∗m
1 ) w k

∗
1

The artificial target is

π̃N
(

θ, k , x1:N
1

)
=

p
(

θ, xk1
∣∣ y1)

N

N

∏
m=1;m 6=k

µθ (x
m
1 )

=
1
N
p (θ) gθ

(
y1| xk1

)
pθ (y1)

N

∏
m=1

µθ (x
m
1 )

We have indeed

π̃
(
θ∗, k∗, x∗1:N

1

)
q̃N
((

θ∗, k∗, x∗1:N
1

)∣∣ (θ, k, x1:N
1

)) = p (θ∗)
q ( θ∗| θ)

1
N ∑N

i=1 gθ∗
(
y1| x∗i1

)
pθ (y1)

(Kyoto, 15th June 2011) 20 / 32



“Idealized”Block Gibbs Sampler

At iteration i

Sample θ (i) ∼ p (·|y1:T ,X1:T (i − 1)).

Sample X1:T (i) ∼ p (·|y1:T , θ (i)).

Naive particle approximation where X1:T (i) ∼ p̂ (·|y1:T , θ (i)) is
substituted to X1:T (i) ∼ p (·|y1:T , θ (i)) is obviously incorrect.
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Particle Gibbs Sampler

A (collapsed) Gibbs sampler to sample from π̃N for T = 1 can be
implemented using

π̃N
(

θ, x−k1
∣∣∣ k, xk1 ) = p ( θ| y1, xk1

) N

∏
m=1;m 6=k

µθ (x
m
1 ) ,

π̃N
(
K = k | θ, x1:N

1

)
=

gθ

(
y1| xk1

)
∑N
i=1 gθ

(
y1| x i1

) .

Note that even for fixed θ, this is a non-standard MCMC update for
pθ (x1| y1). This generalizes Baker’s acceptance rule (Baker, 1965).
The target and associated Gibbs sampler can be generalized to T > 1.
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Particle Gibbs Sampler

At iteration i

Sample θ (i) ∼ p (·|y1:T ,X1:T (i − 1)).

Run a conditional SMC algorithm for θ (i) consistent with
X1:T (i − 1) and its ancestral lineage.
Sample X1:T (i) ∼ p̂ (·|y1:T , θ (i)) from the resulting approximation
(hence its ancestral lineage too).

Proposition. Assume that the ‘ideal’Gibbs sampler is irreducible and
aperiodic then under very weak assumptions the particle Gibbs
sampler generates a sequence {θ (i) ,X1:T (i)} such that for any
N ≥ 2

‖L ((θ (i) ,X1:T (i)) ∈ ·)− p( ·| y1:T )‖ → 0 as i → ∞.
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Conditional SMC Algorithm

At time 1

For m 6= bk1 , sample Xm1 ∼ µθ (·) and set Wm
1 ∝ gθ (y1|Xm1 , ) ,

∑N
m=1W

m
1 = 1.

Resample N − 1 times from p̂θ (x1| y1) = ∑N
m=1W

m
1 δXm1 (x1) to

obtain
{
X
−bk1
1

}
and set X

bk1
1 = X b

k
1
1 .

At time n = 2, ...,T

For m 6= bkn , sample Xmn ∼ fθ
(
·|Xmn−1

)
, set Xm1:n =

(
X
m
1:n−1,X

m
n

)
and Wm

n ∝ gθ (yn |Xmn ) , ∑N
m=1W

m
n = 1.

Resample N − 1 times from p̂θ (x1:n | y1:n) = ∑N
m=1W

m
n δXm1:n

(x1:n) to

obtain
{
X
−bkn
1:n

}
and set X

bkn
1:n = X

bkn
1:n.

At time n = T

Sample X1:T ∼ p̂θ ( ·| y1:T ) .
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Nonlinear State-Space Model

Consider the following model

Xn =
1
2
Xn−1 + 25

Xn−1
1+ X 2n−1

+ 8 cos 1.2n+ Vn,

Yn =
X 2n
20
+Wn

where Vn ∼ N
(
0, σ2v

)
, Wn ∼ N

(
0, σ2w

)
and X1 ∼ N

(
0, 52

)
.

Use the prior for {Xn} as proposal distribution.
For a fixed θ, we evaluate the expected acceptance probability as a
function of N.
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Average Acceptance Probability
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Inference for Stochastic Kinetic Models

Two species X 1t (prey) and X
2
t (predator)

Pr
(
X 1t+dt=x

1
t+1,X

2
t+dt=x

2
t

∣∣ x1t , x2t ) = α x1t dt + o (dt) ,
Pr
(
X 1t+dt=x

1
t−1,X 2t+dt=x2t+1

∣∣ x1t , x2t ) = β x1t x
2
t dt + o (dt) ,

Pr
(
X 1t+dt=x

1
t ,X

2
t+dt=x

2
t−1

∣∣ x1t , x2t ) = γ x2t dt + o (dt) ,

observed at discrete times

Yn = X 1n∆ +Wn with Wn
i.i.d.∼ N

(
0, σ2

)
.

We are interested in the kinetic rate constants θ = (α, β,γ) a priori
distributed as (Boys et al., 2008; Kunsch, 2011)

α ∼ G(1, 10), β ∼ G(1, 0.25), γ ∼ G(1, 7.5).

MCMC methods require reversible jumps, Particle MCMC requires
only forward simulation.
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Experimental Results
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Autocorrelation Functions
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Discussion

PMCMC methods allow us to design ‘good’high dimensional
proposals based only on low dimensional (and potentially
unsophisticated) proposals.

PMCMC allow us to perform Bayesian inference for dynamic models
for which only forward simulation is possible.

Whenever an unbiased estimate of the likelihood function is available,
“exact”Bayesian inference is possible.

More precise quantitative convergence results need to be established.
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