Statistical Machine Learning

Part I: Statistical Learning Theory

mcuturi@i.kyoto-u.ac.jp

Course Introduction

- The Promises of Big Data
- What kind of tools will we use?
- Do we have to program?
- For starters... a first assignment
- Why is this useful for me?

The Promises of Big Data

Personal Health

- Data can help us predict when people will have to go to the hospital

Started: 5:03 pm, Monday 4 April 2011 UTC
Ends: 6:59 am, Wednesday 3 April 2013 UTC (729 total days)
Heritage Health Prize

Small Businesses

- Data can help us predict the dynamics of restaurants' popularity

Yelp Dataset Challenge

Yelp is proud to introduce a deep dataset for research-minded academics from our wealth of data. If you've used our Academic Dataset and want something richer to train your models on and use in publications, this is it. Tired of using the same standard datasets? Want some real-world relevance in your research project? This data is for you!

Yelp is bringing you a generous sample of our data from the greater Phoenix, AZ metropolitan area including:

- 11,537 businesses
- 8,282 checkin sets
- 43,873 users
- 229,907 reviews

Get the Data

Yelp.com dataset challenge

Lending Money

－Data can help us predict who we can lend money to
：LendingClub

AQUSi－
アクシュ

A smarter way to invest and borrow．

www．lendingclub．com

Lending Money

－Data can help us predict who we can lend money to

LendingClub

AQUSi－i
 アクシュ

Download Loan Data

These files contain complete loan data，including the current loan status（Current，Late，Fi We have removed all personally identifiable information to protect our members＇privacy．

```
㘼] Dommloma CSV (44,533kb)
```

www．lendingclub．com

Movies

- Data can help us predict whether people will like a given movie

Netflix Prize, Research@ATT

$\begin{gathered} \text { 480,000 } \\ \text { users } \end{gathered}$	x	1	1	X	\ldots	x
	x	x	x	5	...	x
	x	x	3	x	...	X
	X	4	3	X	...	2
	...	X	x	X	...	x
	X	5	x	1	...	X
	x	X	3	3	...	x
	X	1	X	X	...	2

Hao Zhang

All these problems have in common that...

Data is Available

all you have to do, is download it... and analyze it!

What we will do in 7 lectures

The graduate school has many courses on how to handle data.
Check the course offerings.

In these 7 lectures, we will focus on 3 things:

- Present elementary tools: regression and classification
- Study the mathematical foundations of statistical learning theory:
- Choose the right models, address computational issues,
- Address the problem of overfitting.
- Introduce advanced topics: kernel methods, sparsity.

What kind of mathematical tools?

We will adopt a mathematical formalism to propose and study algorithms.

Probability \& Statistics, Linear Algebra, Optimization

Mathematical Tools

- Probability \& Statistics (to handle uncertainty \& randomness)
- Probability Spaces, Random variables
- Expectation, variance, inequalities
- Central limit theorem, convergence in probability
- Linear Algebra (to handle high-dimensional problems)
- Matrix inverse, eigenvalues/vectors
- Positive-definiteness.
- Optimization (to give the best possible answer)
- convex programs,
- lagrangean, Lagrange multipliers etc.

Programming

This is not a course about programming, but we will implement algorithms

```
I encourage you to use MATLAB but you can use any other program ( R, Python, etc...)
```

I do not recommend using $\mathrm{C} / \mathrm{C}++$ or other compiled languages.

For Starters...

Some simple ideas and a 1st assignment.

A function

a polynomial plotted between 0 and $4 \ldots$

A function

... can be seen as a very detailed scatter plot.

A function

Yet, when less points are available...

A function

can we still guess the whole blue line?

A partially observed function

Assume we only have the red points.

We can guess by using interpolating polynomials

Curve fitting tools can help us get back the original function. We can actually reconstruct it perfectly.

Polynomial Interpolation

even if points are not evenly spaced...

Polynomial Interpolation

Uncertainty in measurements

sometimes, we do not have access to the correct information...

Uncertainty in measurements

but rather an information corrupted by "noise".

Things become a lot more difficult

If we use standard tools...

Things become a lot more difficult

we might be very far from the original function.

Things become a lot more difficult

Can we handle uncertainty in a better way? Quantify how far we might be from the true function?
How many points do we need to reconstruct a more general curve?
Does this work for surfaces in higher dimensions?

Things become a lot more difficult

First assignment - due Monday October 13th 23:59 by email

- Look for a definition of interpolation, e.g. check the wikipedia page.
- Do what I just did with Matlab and send me an email with the results:
- Choose a function.. you can use fancier functions (sin, cos, \exp etc.)
- Plot it. Scatter plot a few points.
- Use these points with the curve fitting tool. Interpolate \& Compare.
- Finally: give me a hint of what might go wrong in higher dimensions?

