Statistical Machine Learning, Part I

Statistical Learning Theory

mcuturi@i.kyoto-u.ac.jp

Previous Lecture: Classification

- Classification: mapping objects onto \mathcal{S} where $|\mathcal{S}| < \infty$.
- Binary classification: answers to yes/no questions
- Linear classification algorithms: split the yes/no zones with a hyperplane

$$\mathsf{Yes} = \{\mathbf{c}^T x + \boldsymbol{b} \geq 0\} \text{ , No} = \{\mathbf{c}^T x + \boldsymbol{b} < 0\}$$

- How to select **c**, **b** given a dataset?
 - Linear Discriminant Analysis (multivariate Gaussians)
 - Logistic Regression (classification from a linear regression viewpoint)
 - Perceptron rule (iterative, random update rule)
 - brief introduction to Support Vector Machine (optimal margin classifier)

Today

- Usual steps when using ML algorithms
 - Define problem (classification? regression? multi-class?)
 - Gather data
 - Choose representation for data to build a database
 - Choose method/algorithm based on training set
 - Choose/estimate parameters
 - Run algorithm on new points, collect results

SML-2015

Today

- Usual steps when using ML algorithms
 - Define problem (classification? regression? multi-class?)
 - Gather data
 - Choose representation for data to build a database
 - Choose method/algorithm
 - Choose/estimate parameters based on training set
 - Run algorithm on new points, collect results

o ... did I overfit?

General Framework

- Couples of observations, (\mathbf{x}, y) appear in nature.
- These observations are

$$\mathbf{x} \in \mathbb{R}^d, \quad y \in \mathcal{S}$$

- $\mathcal{S} \subset \mathbb{R}$, that is \mathcal{S} could be \mathbb{R} , \mathbb{R}_+ , $\{1, 2, 3, \dots, L\}$, $\{0, 1\}$
- Sometimes only \mathbf{x} is visible. We want to guess the most likely y for that \mathbf{x} .
- Example 1 x: Height $\in \mathbb{R}$, y: Gender $\in \{M, F\}$

X is 164cm tall, is X a male or a female?

• Example 2 x: Height $\in \mathbb{R}$, y: Weight $\in \mathbb{R}$.

X is 164cm tall, how many kilos does X weight?

Estimating the relationship between x and y

ullet To provide a guess \Leftrightarrow estimate a function $f:\mathbb{R}^d o \mathcal{S}$ such that

$$f(\mathbf{x}) \approx y.$$

Estimating the relationship between x and y

ullet To provide a guess \Leftrightarrow estimate a function $f:\mathbb{R}^d o\mathcal{S}$ such that

$$f(\mathbf{x}) \approx y$$
.

- Ideally, $f(\mathbf{x}) \approx y$ should apply **both** to
 - \circ couples (\mathbf{x}, y) we have observed in the training set
 - \circ couples (\mathbf{x}, y) we will observe... (guess y from \mathbf{x})

- We assume that each observation (x, y) arises as an
 - o independent,
 - o identically distributed,

random sample from the **same** probability law.

SML-2015

- We assume that each observation (x, y) arises as an
 - o independent,
 - o identically distributed,

random sample from the **same** probability law.

ullet This probability P on $\mathbb{R}^d imes \mathcal{S}$ has a density,

$$p(X = \mathbf{x}, Y = y).$$

SML-2015

- We assume that each observation (x, y) arises as an
 - o independent,
 - identically distributed,

random sample from the **same** probability law.

ullet This probability P on $\mathbb{R}^d imes \mathcal{S}$ has a density,

$$p(X = \mathbf{x}, Y = y).$$

• This also provides us with the **marginal** probabilities for \mathbf{x} and y:

$$p(Y=y) = \int_{\mathbb{R}^d} p(X=\mathbf{x}, Y=y) d\mathbf{x}$$

$$p(X = \mathbf{x}) = \int_{\mathcal{S}} p(X = \mathbf{x}, Y = y) dy$$

 \bullet Assuming that p exists is fundamental in statistical learning theory.

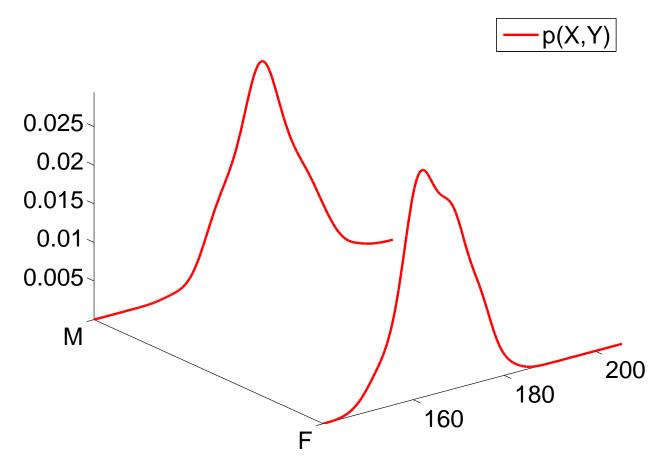
$$p(X = \mathbf{x}, Y = y).$$

• What happens to learning problems if we know p?.. (in practice, this will never happen, we never know p).

• If we know p, learning problems become **trivial**.

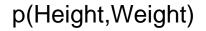
 $(\approx \text{running a marathon on a motorbike})$

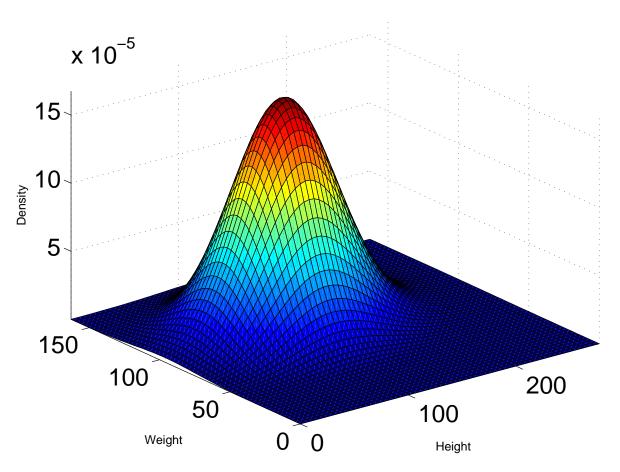
Example 1: $S = \{M, F\}$, Height vs Gender



SML-2015

Example 2: $S = \mathbb{R}^+$, Height vs Weight





SML-2015 14

Conditional probability (or density)

$$p(A,B) = p(A|B)p(B)$$

• Suppose:

$$p(X = 184 \text{cm}, y = M) = 0.015$$

$$p(y = M) = 0.5$$

What is $p(X = 184 \text{cm} \mid y = M)$?

- o 1. 0.15
- o 2. 0.03
- o 3. 0.5
- o 4. 0.0075
- o 5. 0.2

Bayes Rule

$$p(A|B) = \frac{p(B|A)p(A)}{p(B)}$$

• Suppose:

$$p(X = 184 \text{cm} \mid y = M) = 0.03$$
 $p(y = M) = 0.5$ $p(X = 184) = 0.02$

What is p(y = M | X = 184)?

- o 1. 0.6
- o 2. 0.04
- o 3. 0.75
- o 4. 0.8
- o 5. 0.2

Loss, Risk and Bayes Decision

SML-2015 17

Building Blocks: Loss (1)

• A loss is a function $\mathcal{S} \times \mathbb{R} \to \mathbb{R}_+$ designed to **quantify** mistakes,

Examples

• $S = \{0, 1\}$

$$\circ \ 0/1 \text{ loss: } l(a,b) = \delta_{a \neq b} = \begin{cases} 1 \text{ if } a \neq b \\ 0 \text{ if } a = b \end{cases}$$

- $S = \mathbb{R}$
 - Squared euclidian distance $l(a,b) = (a-b)^2$
 - $\circ \text{ norm } l(a,b) = \|a-b\|_q, \ 0 \le q \le \infty$

Building Blocks: Risk (2)

• The **Risk** of a predictor f with respect to **loss** l is

$$R(f) = \mathbb{E}_{\boldsymbol{p}}[l(Y, \boldsymbol{f}(X))] = \int_{\mathbb{R}^d \times \mathcal{S}} \boldsymbol{l}(y, \boldsymbol{f}(\mathbf{x})) \, \boldsymbol{p}(\mathbf{x}, \boldsymbol{y}) d\mathbf{x} dy$$

• Risk = average loss of f on all possible couples (x, y),

weighted by the probability density.

Risk(f) measures the performance of f w.r.t. l and p.

• Remark: a function f with low risk can make very big mistakes for some x as long as the probability p(x) of x is small.

A lower bound on the Risk? Bayes Risk

- Since $l \ge 0$, $R(f) \ge 0$.
- Consider all possible functions $\mathbb{R}^d \to \mathcal{S}$, usually written $(\mathbb{R}^d)^{\mathcal{S}}$.
- The Bayes risk is the quantity

$$R^* = \inf_{\boldsymbol{f} \in (\mathbb{R}^d)^{\mathcal{S}}} R(\boldsymbol{f}) = \inf_{\boldsymbol{f} \in (\mathbb{R}^d)^{\mathcal{S}}} \mathbb{E}_p[l(Y, \boldsymbol{f}(X))]$$

Ideal classifier would have Bayes risk.

SML-2015

Let's write:
$$\eta(\mathbf{x}) = p(Y = 1 | X = \mathbf{x})$$
.

Define the following rule:

$$g_B(\mathbf{x}) = \begin{cases} 1, & \text{if } \eta(\mathbf{x}) \ge \frac{1}{2}, \\ 0 & \text{otherwise.} \end{cases}$$

where

The Bayes classifier achieves the Bayes Risk.

Theorem 1. $R(g_B) = R^*$.

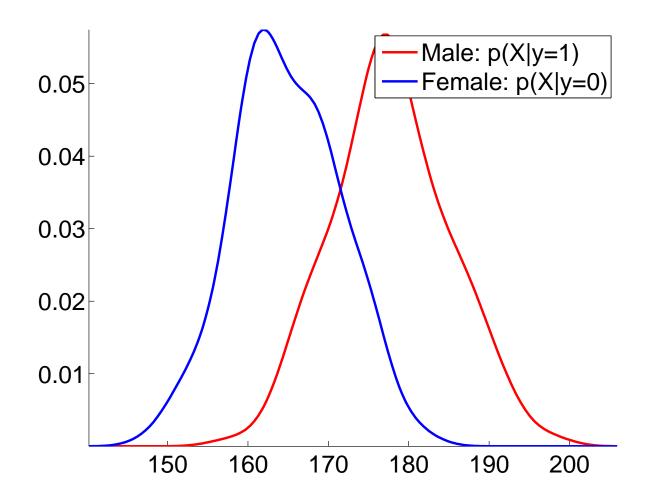
- Chain rule of conditional probability p(A, B) = p(B)p(A|B)
- Bayes rule

$$p(A|B) = \frac{p(B|A)p(A)}{p(B)}$$

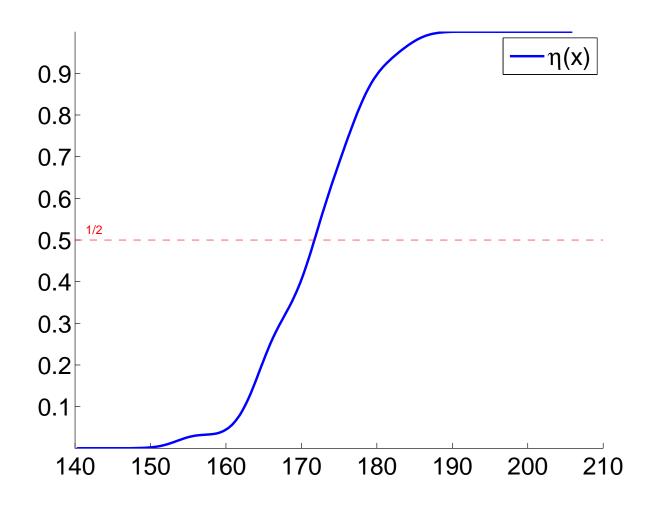
• A simple way to compute η :

$$\begin{split} \eta(\mathbf{x}) &= p(Y=1|X=\mathbf{x}) = \frac{p(Y=1,X=\mathbf{x})}{p(X=\mathbf{x})} \\ &= \frac{p(X=\mathbf{x}|Y=1)p(Y=1)}{p(X=\mathbf{x})} \\ &= \frac{p(X=\mathbf{x}|Y=1)p(Y=1)}{p(X=\mathbf{x}|Y=1)p(Y=1)} \\ &= \frac{p(X=\mathbf{x}|Y=1)p(Y=1)}{p(X=\mathbf{x}|Y=1)p(Y=1) + p(X=\mathbf{x}|Y=0)p(Y=0)}. \end{split}$$

SML-2015



in addition, p(Y=1) = 0.4871. As a consequence p(Y=0) = 1 - 0.4871 = 0.5129



Bayes Estimator : $S = \mathbb{R}$, l is the 2-norm

Consider the following rule:

$$g_B(\mathbf{x}) = \mathbb{E}[Y|X = \mathbf{x}] = \int_{\mathbb{R}} y \, p(Y = y|X = \mathbf{x}) dy$$

Here again, the Bayes estimator achieves the Bayes Risk.

Theorem 2. $R(g_B) = R^*$.

Bayes Estimator : $S = \mathbb{R}$, l is the 2-norm

Using Bayes rule again,

$$f^{\star}(\mathbf{x}) = \mathbb{E}[Y|X = \mathbf{x}] = \int_{\mathbb{R}} \mathbf{y} \, p(Y = y|X = \mathbf{x}) dy$$

$$= \int_{\mathbb{R}} \mathbf{y} \, \frac{p(X = \mathbf{x}|Y = y)p(Y = y)}{p(X = \mathbf{x})} dy$$

$$= \int_{\mathbb{R}} \mathbf{y} \, \frac{p(X = \mathbf{x}|Y = y)p(Y = y)}{\int_{\mathbb{R}} p(X = \mathbf{x}|Y = u)p(Y = u) du} dy$$

$$= \frac{\int_{\mathbb{R}} \mathbf{y} \, p(X = \mathbf{x}|Y = y)p(Y = y) dy}{\int_{\mathbb{R}} p(X = \mathbf{x}|Y = y)p(Y = y) dy}$$

SML-2015

In practice: No p, Only Finite Samples

SML-2015 27

What can we do?

- If we know the probability p, Bayes estimator would be impossible to beat.
- In practice, the only thing we can use is a training set,

$$\{(\mathbf{x}_i, y_i)\}_{i=1,\dots,n}.$$

• For instance, a list of Heights, gender

163.0000	F
170.0000	F
175.3000	М
184.0000	М
175.0000	М
172.5000	F
153.5000	F
164.0000	М
163.0000	M

Approximating Risk

ullet For any function f, we **cannot** compute its true risk R(f),

$$\mathbf{R}(\mathbf{f}) = \mathbb{E}_{\mathbf{p}}[l(Y, \mathbf{f}(X))]$$

because we do not know p

• Instead, we can consider the **empirical** Risk R_n^{emp} , defined as

$$\mathbf{R_n^{emp}}(\mathbf{f}) = \frac{1}{n} \sum_{i=1}^{n} l(y_i, \mathbf{f}(\mathbf{x}_i))$$

ullet The law of large numbers tells us that for any given $oldsymbol{f}$

$$R_n^{\mathrm{emp}}(f) o R(f).$$

Relying on the empirical risk

As sample size n grows, the empirical risk behaves like the real risk

- It may thus seem like a good idea to minimize directly the empirical risk.
- The intuition is that
 - \circ since a function f such that R(f) is low is desirable,
 - \circ since ${m R}^{
 m emp}_{m n}(f)$ converges to R(f) as $n o \infty$,

why not look directly for any function f such that $\mathbf{R}_{n}^{\mathrm{emp}}(f)$ is low?

 \bullet Typically, in the context of classification with 0/1 loss, find a function such that

$$\mathbf{R_n^{emp}}(f) = \frac{1}{n} \sum_{i=1}^n \delta_{y_i \neq f(\mathbf{x}_i)}$$

...is low.

A flawed intuition

- However, focusing **only** on R_n^{emp} is not viable.
- Many ways this can go wrong...

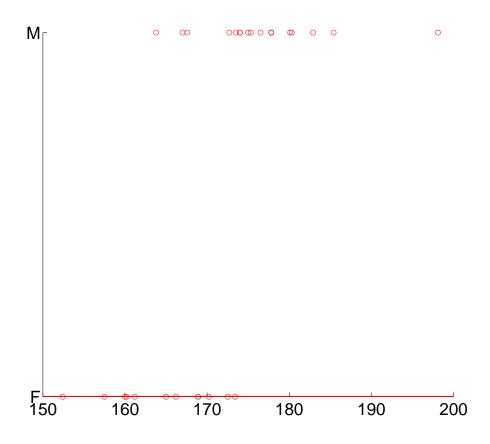
A flawed intuition

Consider the function defined as

$$h(\mathbf{x}) = egin{cases} y_1, & \text{if } \mathbf{x} = \mathbf{x}_1, \\ y_2, & \text{if } \mathbf{x} = \mathbf{x}_2, \\ \vdots & & & \\ y_n, & \text{if } \mathbf{x} = \mathbf{x}_n, \\ 0 & \text{otherwise..} \end{cases}$$

- Since, $R_n^{emp}(h) = \frac{1}{n} \sum_{i=1}^n \delta_{y_i \neq h(\mathbf{x}_i)} = \frac{1}{n} \sum_{i=1}^n \delta_{y_i \neq y_i} = 0$, h minimizes R_n^{emp} .
- However, h always answers 0, except for a few points.
- In practice, we can expect R(h) to be much higher, equal to P(Y=1) in fact.

Here is what this function would predict on the Height/Gender Problem



Overfitting is probably the most frequent mistake made by ML practitioners.

SML-2015 33

Ideas to Avoid Overfitting

- Our criterion $R_n^{\text{emp}}(g)$ only considers a **finite** set of points.
- A function g defined on \mathbb{R}^d is defined on an **infinite** set of points.

A few approaches to control overfitting

Restrict the set of candidates

$$\min_{g \in \mathcal{G}} \mathbf{R}_{n}^{emp}(g).$$

Penalize "undesirable" functions

$$\min_{g \in \mathcal{G}} R_n^{\text{emp}}(g) + \lambda \|g\|^2$$

Are there theoretical tools which justify such approaches?

Bounds

SML-2015 35

Flow of a learning process in Machine Learning

- Assumption 1. existence of a probability density p for (X,Y).
- Assumption 2. points are observed i.i.d. following this probability density.

SML-2015 36

Flow of a learning process in Machine Learning

- Assumption 1. existence of a probability density p for (X,Y).
- Assumption 2. points are observed i.i.d. following this probability density.

Roadmap

- Get a random training sample $\{(\mathbf{x}_j, y_j)\}_{i=1,\dots,n}$ (training set)
- Choose a class of functions \mathcal{G} (method or model)
- Choose g_n in \mathcal{G} such that $\mathbf{R}_n^{\text{emp}}(g_n)$ is **low** (estimation algorithm)

Flow of a learning process in Machine Learning

- Assumption 1. existence of a probability density p for (X,Y).
- Assumption 2. points are observed i.i.d. following this probability density.

Roadmap

- Get a random training sample $\{(\mathbf{x}_j, y_j)\}_{i=1,\dots,n}$ (training set)
- Choose a class of functions \mathcal{G} (method or model)
- Choose g_n in $\mathcal G$ such that $R_n^{\text{emp}}(g_n)$ is low (estimation algorithm)

Next... use g_n in practice

Flow of a learning process in Machine Learning

Yet, you may want to have a partial answer to these questions

- How good would be g_B if we knew the real probability p?
- what about $R(g_n)$?
- What's the gap between them, $R(g_n) R(g_B)$?
- Is the *estimation* algorithm reliable? how big is $\mathbf{R}^{emp}(\mathbf{g_n}) \inf_{g \in \mathcal{G}} \mathbf{R}_{\mathbf{n}}^{emp}(g)$?
- how big is $\mathbf{R}_{n}^{\mathbf{emp}}(g_{n}) \inf_{g \in \mathcal{G}} \mathbf{R}(g)$?

Excess Risk

- In the general case $g_B \notin \mathcal{G}$.
- Hence, by introducing g^* as a function achieving the lowest risk in \mathcal{G} ,

$$R(g^{\star}) = \inf_{g \in \mathcal{G}} R(g),$$

we decompose

$$R(g_n) - R(g_B) = [R(g_n) - R(g^*)] + [R(g^*) - R(g_B)]$$

Excess Risk

- In the general case $g_B \notin \mathcal{G}$.
- Hence, by introducing g^* as a function achieving the lowest risk in \mathcal{G} ,

$$R(g^*) = \inf_{g \in \mathcal{F}} R(g),$$

we decompose

$$R(g_n) - R(g_B) = \underbrace{[R(g_n) - R(g^*)]}_{\text{Estimation Error}} + \underbrace{[R(g^*) - R(g_B)]}_{\text{Approximation Error}}$$

- Estimation error is random, Approximation error is fixed.
- In the following we focus on the estimation error.

Types of Bounds

Error Bounds

$$R(g_n) \leq \mathbf{R_n^{emp}}(g_n) + C(n, \mathcal{G}).$$

Types of Bounds

Error Bounds

$$R(g_n) \leq \mathbf{R_n^{emp}}(g_n) + C(n, \mathcal{G}).$$

Error Bounds Relative to Best in Class

$$R(g_n) \le R(g^*) + C(n, \mathcal{G}).$$

Types of Bounds

Error Bounds

$$R(g_n) \leq \mathbf{R_n^{emp}}(g_n) + C(n, \mathcal{G}).$$

Error Bounds Relative to Best in Class

$$R(g_n) \le R(g^*) + C(n, \mathcal{G}).$$

Error Bounds Relative to the Bayes Risk

$$R(g_n) \le R(g_B) + C(n, \mathcal{G}).$$

Error Bounds / Generalization Bounds

$$R(g_n) - \mathbf{R_n^{emp}}(g_n)$$

What is Overfitting?

- Overfitting is the idea that,
 - \circ given n training points sampled randomly,
 - \circ given a function g_n estimated from these points,
 - we may have...

$$R(g_n) \gg \mathbf{R_n^{emp}}(g_n).$$

What is Overfitting?

- Overfitting is the idea that,
 - \circ given n training points sampled randomly,
 - \circ given a function g_n estimated from these points,
 - we may have...

$$R(g_n) \gg \mathbf{R}_{\mathbf{n}}^{\mathbf{emp}}(g_n).$$

• Question of interest:

$$P[R(g_n) - \mathbf{R_n^{emp}}(g_n) > \varepsilon] = ?$$

ullet From now on, we consider the **classification** case, namely $\mathcal{G}:\mathbb{R}^d o \{0,1\}.$

Alleviating Notations

• More convenient to see a couple (\mathbf{x}, y) as a realization of Z, namely

$$\mathbf{z}_i = (\mathbf{x}_i, y_i), Z = (X, Y).$$

• We define the *loss class*

$$\mathcal{F} = \{ f : \mathbf{z} = (\mathbf{x}, y) \to \delta_{g(\mathbf{x}) \neq y}, \ g \in \mathcal{G} \},$$

with the additional notations

$$Pf = \mathbb{E}[f(X,Y)], P_n f = \frac{1}{n} \sum_{i=1}^n f(\mathbf{x}_i, y_i),$$

where we recover

$$P_n f = \mathbf{R_n^{emp}}(g), \quad Pf = R(g)$$

Empirical Processes

For each $f \in \mathcal{F}$, $P_n f$ is a random variable which depends on n realizations of Z.

• If we consider all possible functions $f \in \mathcal{F}$, we obtain

The set of random variables $\{P_n f\}_{f \in \mathcal{F}}$ is called an Empirical measure indexed by \mathcal{F} .

• A branch of mathematics studies explicitly the convergence of $\{Pf - P_nf\}_{f \in \mathcal{F}}$,

This branch is known as Empirical process theory

Hoeffding's Inequality

ullet Recall that for a given g and corresponding f,

$$R(g) - R^{\text{emp}}(g) = Pf - P_n f = \mathbb{E}[f(Z)] - \frac{1}{n} \sum_{i=1}^{n} f(\mathbf{z}_i),$$

which is simply the difference between the **expectation** and the empirical average of f(Z).

The strong law of large numbers says that

$$P\left(\lim_{n\to\infty} \mathbb{E}[f(Z)] - \frac{1}{n} \sum_{i=1}^{n} f(\mathbf{z}_i) = 0\right) = 1.$$

Hoeffding's Inequality

• A more detailed result is

Theorem 3 (Hoeffding). Let Z_1, \dots, Z_n be n i.i.d random variables with $f(Z) \in [a, b]$. Then, $\forall \varepsilon$,

$$P[|P_n f - Pf| > \varepsilon] \le 2e^{-\frac{2n\varepsilon^2}{(b-a)^2}}.$$