
Fast Computation of Wasserstein Barycenters
Marco Cuturi1 , Arnaud Doucet2

1 Kyoto University - Graduate School of Informatics 2 University of Oxford - Department of Statistics

Motivation: Averaging Measures

Empirical Probability Measures
Play a Crucial Role in Machine Learning.

• A dataset, a sample = empirical measure.

• A bag-of-words, a histogram = empirical measure (finite probability space).

How can we average
a set of Empirical Probability Measures {ν1, · · · , νN }?

Ω: finite set (histograms), Hilbert, Metric...
D: Riemannian, Hilbert, APSP on a graph...

First question: how can we define averages?
• For vectors {x1, · · · , xN} in a Hilbert space, their average is

x̄ =
1

N

N∑
i=1

xi (Explicit formula)

= argmin
u∈Rd

‖u− xi‖22 = argmin
u∈Rd

DEuclidean(u, xi)
2 (Variational formulation)

• For non-Euclidean spaces (e.g. probability simplex) define a metric/ a diver-
gence [Banerjee et al’05, Nielsen’13] and min. the variational formulation.

Our contribution: A Fast Computational Approach
to compute that average when

D = the Optimal Transport Distance
a.k.a Wasserstein, EMD, Monge-Kantorovich

Wasserstein Barycenters (theory by [Agueh,Carlier’11])
• Wasserstein... : for p ∈ [1,∞), µ, ν in P (Ω),

Wp(µ, ν)
def
=

(
inf

π∈Π(µ,ν)

∫
Ω2

D(x, y)pdπ(x, y)

)1/p

[Villani’09],

where Π(µ, ν) is the set of probability measures on Ω2 with marginals µ, ν.

• ...Barycenters: argminµ f(µ)
def
= 1

N

∑N
i=1W

p
p (µ, νi).

Wasserstein Barycenters in One Example
30 measures on the plane [0, 1]2, discretized as a 100× 100 grid.

(in memory: 30 gray level histograms of dimension 10.000, each sums to 1)

Standard Euclidean Mean Euclidean Mean (After recentering)

Symmetrized Kullback-Leibler RKHS Mean (Gaussian σ = 0.002)

2-Wasserstein Mean
How can we get that? Duality, Sinkhorn’s
Matrix Scaling Algorithm to Solve Entropy
Smoothed Optimal Transport, GPGPU.

Computation

Optimal Transport
• Let µ =

∑n
i=1 aiδxi and ν =

∑n
j=1 bjδyj be 2 probability measures.

• Let the (pairwise distance matrix)p MXY
def
= [D(xi, yj)

p]ij ∈ Rn×m

• Let the transportation polytope U(a, b) of a ∈ Σn and b ∈ Σm be

U(a, b)
def
= {T ∈ Rn×m+ | T1m = a, TT1n = b}.

• Then, their p-Wasserstein distance is the solution (either primal or dual LP)

W p
p (µ, ν) =


p(a, b,MXY )

def
= minT∈U(a,b)〈T,MXY 〉 (primal)

d(a, b,MXY )
def
= max(α,β)∈CMXY

αTa+ βT b , (dual)
where CM = {(α, β) ∈ Rn+m |αi + βj ≤Mij}.

= W (a,X)

(Sub)differentiability of Wasserstein Distance
• ∂W |a = α?⇒ dual opt. α? is a subgradient of W |a

• ∂W |X = Y T ?T diag(a−1)⇒ primal opt. is a subgr. ofW |X (in Euclidean case.)

Given νi with supp. Yi and weights bi, find
support X and weight a to min. f (a,X)

f(a,X)
def
=

1

N

N∑
i=1

p(a, bi,MXYi)

Naive Subgradient Method (Hopeless...)
• a→ f(a,X) is CONVEX: simple subgradient works (in theory...)

• X → f(a,X) is NOT CONVEX: can only converge to local minima (k-means)

Efficient Computations using Sinkhorn
• ENTROPY SMOOTHED [Cuturi’13] primal/dual optimal transports

pλ(a, b;M) = min
T∈U(a,b)

〈X,M 〉 − 1

λ
h(T ).

dλ(a, b;M) = max
(α,β)∈Rn+m

αTa+ βT b−
∑

i≤n,j≤m

e−λ(mij−αi−βj)

λ

Proposition: Let K def
= e−λMXY . Then there exists a pair of vectors (u, v) ∈

Rn+ × Rm+ recoverable with Sinkhorn’s algorithm in O(nm) such that

T ?λ = diag(u)K diag(v), α?λ = − log(u)

λ
+

log(u)T1n
λn

1n.

• ⇒ do a simple (projected) gradient descent on smoothed objectives.

More details (GPU parallelization, links with
constrained clustering etc) in the paper.


