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Motivation: Averaging Measures Wasserstein Barycenters in One Example Computation
30 measures on the plane [0, 1]%, discretized as a 100 x 100 grid. Optim al Transp ort
Empirica] Prob ablllty Measures (in memory: 30 gray level histograms of dimension 10.000, each sums to 1)
Play a Crucial Role in Machine Learning. 2 © o Letp=) , a0, andv =) ., b;0, be?2probability measures.
e A dataset, a sample = empirical measure @ | . 9 e Let the (pairwise distance matrix)? Myy < [D(z;, y;)?)i; € R"™™
’ ' Let the t tati lytope U(a,b) ofa € ¥, and b € %,,, b
e A bag-of-words, a histogram = empirical measure (finite probability space). @ @ o Let the transportation polytope U(a,b) of a an e

Ula,b) S{T € R"™ | T1,, = a, TT1,, = b}.

How can we average
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a set of Empirical Probability Measures {v, - -- ,vn}? S @
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e Then, their p-Wasserstein distance is the solution (either primal or dual LP)

p(a,b, Mxy) et Mingep (a5 {1, Mxy ) (primal)

@ Wz?(:“v V) — d(CL, b, Mxy) déf maX(Oé,/J))GOMXY aTa —+ 6Tb ; (dual) — W(CL, X)
where Cy; = {(a, 8) € R | a; + B; < M;,;}-
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(Sub)differentiability of Wasserstein Distance
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(£2, D) Vs = ) . CiOy, Standard Euclidean Mean  Euclidean Mean (After recentering) * OW|q, = a” = dual opt. a” is a subgradient of W,
e BT i-'-i'“.-—-w o OW|x = YT*! diag(a™') = primal opt. is a subgr. of W|x (in Euclidean case.)
i l-i--} l'l'""'::' “ _— 0 e . 1
(): finite set (histograms), Hilbert, Metric... ' " ; : ' Given v; with SUpp. Y; and WE{ghtS b;, find
D: Riemannian, Hilbert, APSP on a graph... 't ek support X and weight a to min. f(a, X)

N
" def 1
f(a’7 X) — N;p(a’ab’qun)

First question: how can we define averages?

e For vectors {z1,--- ,zn} in a Hilbert space, their average is EL. Naive Sllbgradient Method (HOPEIESS...)
1 N o i e a — f(a,X)is CONVEX: simple subgradient works (in theory...)
T = — Z X, (Explicit formula) - . o
N — e X — f(a,X)is NOT CONVEX: can only converge to local minima (k-means)
— argminl||u — z;||3 = argmin Deyaigean (u, 3)*  (Variational formulation)
ueRs ueRs Symmetrized Kullback-Leibler =RKHS Mean (Gaussian o = 0.002) oo . . .
| o | o Efficient Computations using Sinkhorn
e For non-Euclidean spaces (e.g. probability simplex) define a metric/ a diver-
gence [Banerjee et al’05, Nielsen’13] and min. the variational formulation. e ENTROPY SMOOTHED [Cuturi’13] primal/dual optimal transports

Owur contribution: A Fast Computational Approach

pa(a.b: M) = min (X, M) — %h(T).
to compute that average when

TeU(a,b)

. . e~ AMmij—a;—B;)
D = the Optimal Transport Distance da(a,b; M) = max a¥a+5b -3 \
a.k.a Wasserstein, EMD, Monge-Kantorovich | i<n,j<m
det _A\Mxy

Proposition: Let K = e . Then there exists a pair of vectors (u,v) €
R” x R recoverable with Sinkhorn’s algorithm in O(nm) such that

Wasserstein Barycenters (theory by [Agueh,Carlier’11])

* o o % lOg u 10g U T]_n
e Wasserstein... : for p € [1,00), u, v in P(£2), Ty = diag(u)K diag(v), Q) = — )f ) | (M)z 1.

2-Wasserstein Mean

1/
W, (u, y)déf ( inf D(z,y)Pdn(z y)> ’ [Villani’09] e = do a simple (projected) gradient descent on smoothed objectives.

mell(p,v) J2

How can we get that? Duality, Sinkhorn’s
where I1(1, V) is the set of probability measures on 2 with marginals p, v. Matrix SCaling Algor ithm to Solve Entropy More details (GPU parallelization , links with

e ..Barycenters: argmin, f(11) < L SN W (1), smoothed Optimal Transport, GPGPU. constrained clustering etc) in the paper.



